
Master Data Management
Developer Guide

Release 4.8.0
B035-0000-9703
December 2022

Copyrights or Trademarks

All copyrights and trademarks used in Teradata documentation are the property of their
respective owners. For more information, see Section : “Teradata Trademark and Trademark
Attributions.”

Product Safety

Warranty Disclaimer
Except as may be provided in a separate written agreement with Teradata or required
by applicable law, the information available from the Teradata Documentation website
or contained in Teradata information products is provided on an "as-is" basis, without
warranty of any kind, either express or implied, including the implied warranties of
merchantability, fitness for a particular purpose, or noninfringement.

The information available from the Teradata Documentation website or contained in Teradata
information products may contain references or cross-references to features, functions,
products, or services that are not announced or available in your country. Such references do
not imply that Teradata Corporation intends to announce such features, functions, products, or
services in your country. Please consult your local Teradata Corporation representative for
those features, functions, products, or services available in your country.

The information available from the Teradata Documentation website or contained in Teradata
information products may be changed or updated by Teradata at any time without notice.
Teradata may also make changes in the products or services described in this information at
any time without notice.

Safety Type Description

Indicates a situation which, if not avoided, could result in damage to property, such as to
equipment or data, but not related to personal injury.

Indicates a hazardous situation which, if not avoided, could result in minor or moderate
personal injury.

Indicates a hazardous situation which, if not avoided, could result in death or serious personal
injury.

Feedback
To maintain the quality of our products and services, e-mail your comments on the accuracy,
clarity, organization, and value of this document to: docs@teradata.com.

Any comments or materials (collectively referred to as "Feedback") sent to Teradata
Corporation will be deemed nonconfidential. Without any payment or other obligation of any
kind and without any restriction of any kind, Teradata and its affiliates are hereby free to (1)
reproduce, distribute, provide access to, publish, transmit, publicly display, publicly perform,
and create derivative works of, the Feedback, (2) use any ideas, concepts, know-how, and
techniques contained in such Feedback for any purpose whatsoever, including developing,
manufacturing, and marketing products and services incorporating the Feedback, and (3)
authorize others to do any or all of the above.

Teradata Trademark and Trademark
Attributions

Teradata, BYNET, Claraview, Covalent, DecisionCast, IntelliBase, IntelliCloud, IntelliFlex,
IntelliSphere, nPath, QueryGrid, SQL-MapReduce, Stacki, "Teradata" logo, Teradata
Analytics Platform, Teradata Decision Experts, "Teradata Labs" logo, Teradata
ServiceConnect, and Teradata Vantage are trademarks or registered trademarks of Teradata
Corporation or its affiliates in the United States and other countries.

Adaptec and SCSISelect are trademarks or registered trademarks of Adaptec, Inc.

Amazon Web Services, AWS, Amazon Elastic Compute Cloud, Amazon EC2, Amazon
Simple Storage Service, Amazon S3, AWS CloudFormation, and AWS Marketplace are
trademarks of Amazon.com, Inc. or its affiliates in the United States and/or other countries.

AMD Opteron and Opteron are trademarks of Advanced Micro Devices, Inc.

Apache, Apache Avro, Apache Hadoop, Apache Hive, Hadoop, and the yellow elephant logo
are either registered trademarks or trademarks of the Apache Software Foundation in the
United States and/or other countries.

Apple, Mac, and OS X all are registered trademarks of Apple Inc.

Axeda is a registered trademark of Axeda Corporation. Axeda Agents, Axeda Applications,
Axeda Policy Manager, Axeda Enterprise, Axeda Access, Axeda Software Management,
Axeda Service, Axeda ServiceLink, and Firewall-Friendly are trademarks and Maximum
Results and Maximum Support are servicemarks of Axeda Corporation.

CENTOS is a trademark of Red Hat, Inc., registered in the U.S. and other countries.

Cloudera and CDH are trademarks or registered trademarks of Cloudera Inc. in the United
States, and in jurisdictions throughout the world.

Data Domain, EMC, PowerPath, SRDF, and Symmetrix are either registered trademarks or
trademarks of EMC Corporation in the United States and/or other countries.

GoldenGate is a trademark of Oracle.

Hewlett-Packard and HP are registered trademarks of Hewlett-Packard Company.

Hortonworks, the Hortonworks logo and other Hortonworks trademarks are trademarks of
Hortonworks Inc. in the United States and other countries.

Intel, Pentium, and XEON are registered trademarks of Intel Corporation.

IBM, CICS, RACF, Tivoli, IBM Spectrum Protect, and z/OS are trademarks or registered
trademarks of International Business Machines Corporation.

Linux is a registered trademark of Linus Torvalds.

LSI is a registered trademark of LSI Corporation.

Microsoft, Azure, Active Directory, Windows, Windows NT, and Windows Server are
registered trademarks of Microsoft Corporation in the United States and other countries.

NetVault is a trademark of Quest Software, Inc.

Novell and SUSE are registered trademarks of Novell, Inc., in the United States and other
countries.

Oracle, OpenJDK, Java, and Solaris are trademarks or registered trademarks of Oracle and/or
its affiliates.

QLogic and SANbox are trademarks or registered trademarks of QLogic Corporation.

Quantum and the Quantum logo are trademarks of Quantum Corporation, registered in the
U.S.A. and other countries.

Red Hat is a trademark of Red Hat, Inc., registered in the U.S. and other countries. Used
under license.

SAP is the trademark or registered trademark of SAP AG in Germany and in several other
countries.

SAS and SAS/C are trademarks or registered trademarks of SAS Institute Inc.

Sentinel® is a registered trademark of SafeNet, Inc.

Simba, the Simba logo, SimbaEngine, SimbaEngine C/S, SimbaExpress and SimbaLib are
registered trademarks of Simba Technologies Inc.

SPARC is a registered trademark of SPARC International, Inc.

Unicode and the Unicode logo are registered trademarkes of Unicode, Inc. in the United
States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Veritas, the Veritas Logo and NetBackup are trademarks or registered trademarks of Veritas
Technologies LLC or its affiliates in the U.S. and other countries.

Other product and company names mentioned herein may be the trademarks of their
respective owners.

Preface

Purpose

Welcome to Teradata’s Master Data Management (MDM) Product. Teradata’s Master Data
Management product can be thought as the set of methods or processes and procedures used
to manage, reference, and synchronize correct and consistent Master Data across an
Enterprise. The Teradata MDM product can provide the user with the capability to manage,
integrate and consolidate Master Data with or without having to replace existing systems.
Master Data can be defined as Data that is important to the company, may be referenced in
transactional data, and changes over time (hence must be managed), and is needed in multiple
enterprise systems by multiple users.

Teradata’s MDM product provides the business users with the capability to create and manage
the data. Teradata’s MDM provides the ability to create flexible business workflows that
accurately reflect the specific business needs of the customer and to provide this accurate and
consistent information to anyone in the enterprise. Teradata’s MDM is built upon an open
architecture known as Service Oriented Architecture (SOA) and the Teradata platform itself,
which provides the necessary performance, scalability, and reliability attributes of a World
Class Master Data Management product.

With the Teradata’s MDM solution you can stage, consolidate, validate, cleanse, store,
augment, cross-reference, and publish data to systems in and across your enterprise. By
ensuring cross-system data consistency, Teradata’s Master Data Management can enable
flawless and timely execution of business processes – while leveraging existing investments
and reducing the total cost of ownership to manage business critical data.

Teradata’s MDM provides a framework for building business workflows by defining the
necessary data in workflows via X-Docs and expressing the business logic that operates on
the data via X-Rules. This framework enables the definition of business process workflows in
a configurable manner with little programming effort.

Topics:

• About Teradata’s Master Data Management

• About This Book

• Related Documentation

• Customer Support

• Documentation Feedback
Master Data Manager Developer Guide 0

Preface
About Teradata’s Master Data Management
About Teradata’s Master Data Management

Teradata’s Master Data Management (MDM) helps you manage key data elements within the
Enterprise Data Warehouse (EDW), within an Active Data Warehouse (ADW), as well as,
across various enterprise systems and geographies.

Teradata’s MDM enables this with the following high-level key features:

• Data Staging for Loading, Cleansing, and Validation.

• Master Data Life-Cycle Management for Data Maintenance and Business Specific
Workflows and Processes.

• Publishing, Versioning, and Cross Referencing of Master Data.

• Data Model Extensibility and Integration with the Enterprise Data Model.

• Hierarchy Management.
Master Data Manager Developer Guide i

Preface
About This Book
About This Book

This document is intended to provide the overview and recommended approach and uses of
Teradata’s MDM capabilities when Designing, Building, and Deploying an MDM
Application. The Developers Guide is not intended to replace or repeat the detail information
located in the various User Guides, but rather reference them, as appropriate, from the overall
life-cycle and development of a MDM application.

Target Audience
This guide is intended primarily for those individuals who are planning, participating, and
responsible for Designing, or Building, or Deploying a MDM application. The Teradata’s
MDM product is a Teradata optimized product and knowledge of Teradata capabilities and
architecture are embraced within this developers guide.

What You Should Know
This guide assumes that the audience is familiar with basic development practices of a
software application. In addition, the audience should have some familiarity with Services
oriented architectures and Web Services. The Teradata’s MDM product provides the
capability to develop and deploy a business process as a workflow, therefore, in the design of
the MDM application any experience in business process analysis and workflow analysis
would be beneficial. The data model used by the Teradata’s MDM product is aligned to the
utilization of Data Models in the Teradata EDW/ADW context, therefore, any experience
with Teradata data model implementations would be beneficial.

Document Structure
This book contains the following sections:

• “Section A—Developer Reference” describes MDM Architecture and provides guidelines
for development in MDM.

• “Section B—Sample Application” describes MDM solution and its key features. It
provides information on creating a sample application and sample application (CDI)
process. Explains data modeling environment provided by MDM Studio and defines Web
components.

Changes to This Book
The following changes were made to this book in support of the current release. For a
complete list of changes to the product, refer Master Data Management Release Definition
associated with this release.

Date and Release Description

August 2013, 3.3 Updated sample application installer images.
Master Data Manager Developer Guide ii

Preface
Related Documentation
Related Documentation

For more information on MDM, refer the following documents:

• Master Data Management Studio User Guide

(Master Data Management 4.8.0 Studio User Guide.pdf)

• Master Data Management Release Definition

(Master Data Management 4.8.0 Release Definition.pdf)

• Master Data Management Server Guide

April 2014, 3.3.1 Updated sample application installer images.

November 2014,
3.4

Updated sample application installer images.

January 2015, 3.4 Version details updated.

February 2015,
3.4.1

Version details updated.

November 2015,
3.5

Version details updated.

March 2016, 3.5.1 Version details updated.

June 2016, 3.5.2 Version details updated.

November 2016,
3.5.3

Version details updated.

August 2017, 4.0.0 Version details updated.

September 2017,
4.0.1

Version details updated.

December 2017,
4.1.0

Version details updated.

June 2018, 4.2.0 Version details updated.

April 2019, 4.3.0 Version details updated.

November 2019,
4.4.0

Version details updated.

June 2020, 4.5.0 Version details updated.

March 2021, 4.6.0 Version details updated.

March 2022, 4.7.0 Version details updated.

November 2022,
4.8.0

Version details updated

Date and Release Description
Master Data Manager Developer Guide iii

Preface
Customer Support
(Master Data Management 4.8.0 Server Guide.pdf)

• Master Data Management Installation Guide

(Master Data Management 4.8.0 Installation Guide.pdf)

• Master Data Management Reference Guide

(Master Data Management 4.8.0 Reference Guide.pdf)

The above Teradata documents are available at: https://docs.teradata.com

To Read The Documentation
To read the .pdf files, you must have Adobe Acrobat Reader, version 4.0 or higher. If you do
not have Acrobat Reader on your machine, you can download it from Adobe’s Web site at
http://www.adobe.com.

Customer Support

Customer support is available at the Teradata customer support Web site (https://
access.teradata.com), where you can:

• Request shipment of software.

• Download software documentation.

• Submit new issues or cases.

• Track the status of current issues or cases.

Documentation Feedback

Please share your thoughts and ideas:

• Send feedback to docs@teradata.com.

• Navigate to https://teradata-documentation.ideas.aha.io/ideas/new and provide your ideas.
Master Data Manager Developer Guide iv

Table of Contents

Purpose . v

About Teradata’s Master Data Management .vi

About This Book . vii
Target Audience. vii
What You Should Know . vii
Document Structure . vii
Changes to This Book . vii

Related Documentation .viii
To Read The Documentation . ix

Customer Support . ix

Documentation Feedback . ix

Section A: —Developer Reference . 1

Chapter 1: Teradata MDM Overview . 2

Product Overview . 2

Product Composition . 4

Business Architecture . 5

General Process . 7

Technical Architecture . 8
MDM Studio Architecture . 9
MDM Platform Architecture . 11
MDM Database Topology . 14
Data Architecture . 17

Chapter 2: MDM Development Guidelines 18

Overview . 18

Model Development . 18
Model Naming Conventions . 18
Model Customization Guidelines. 19
Master Data Manager Developer Guide x

Table of Contents
Business Logic Customizations . 20
Workflows . 20
Rules. 20
Validations . 20
DataPersist Rules . 21
Additional Best Practices on Business Logic Customizations. 21

User Interface Customizations . 21
X2 based. 21
PGL based . 22
Best Practices - PGL based UI Workflow Development . 22

Reuse of Code Modules . 24
Creating Reusable Modules . 25

Chapter 3: Development of an MDM Application 38

Overview . 38
Scoping an MDM Application. 38
Planning an MDM Application . 39
Skill Set Requirements. 39

Building an Application in MDM Studio . 40
Overview . 40
MDM Development Elements . 44
X-Documents . 44
X-Rules . 45
X-Operations . 45
X-Path . 46
Key Features of Studio. 46
Hierarchy Management . 46
Web Services Support . 47
OMI . 49
Data Authorization. 49
Data Quality Monitors . 49
MDM Test Services Framework . 50
Deployment Support . 50
Sample Application Support . 51
List of Key Services. 52

Chapter 4: Customer Service . 54

World Class Support. 54
Master Data Manager Developer Guide xi

Table of Contents
Web Access . 55

Chapter 5: Training. 56

Training Information . 56

Section B: —Sample Application . 57

Chapter 6: Introduction . 58

Introduction . 58

MDM Key Features . 59

Studio Sample Projects. 60

MDM Sample Application . 60
Custom Application . 60
MDM—Sample Application (CDI) Solution. 61
MDM—Sample Application (CDI) Solution with Trillium Software. 61

Chapter 7: Custom Application . 62

Introduction . 62

Custom Application Creation . 62

Sample Application Setup . 74
Installation . 74
Load Pre-defined Data . 84
 . Configuring Sample Application Project in Eclipse84
Enable Web Services (Optional Step) . 84

Custom Application Folder Structure. 87

Chapter 8: Custom Models . 89

Creating a Model using Studio . 89

Importing a Model into MDM Studio . 89
Import from Relational Database. 90
Import from ERwin . 91
Master Data Manager Developer Guide xii

Table of Contents
Import from XDocs . 93

Chapter 9: Define Web Component . 94

Define UI Navigation Structure . 94

Include into Web Component. 96

Chapter 10: Sample Application Process . 98

Introduction . 98

Sample Application Data Model . 98

Sample Application CDI Process Flow . 99
CDI Process Flow . 100

Sample Application with Trillium Process Flow . 113
Summary . 113
Trillium Process Flow . 113

Appendix A: Publication Services . 119

Introduction . 119
Publication Object . 121
Publication Method . 121
Publication Node . 121

Logical Data Model . 122
Metadata Tables . 123
Following an Audit Trail of a Publication Request . 127

Appendix B: Configuration of Trillium Client 130

Trillium Client Setup in MDM. 130

Appendix C: MDM Custom Web Services . 136

Introduction . 136

Incoming Teradata MDM Web Service . 136
Master Data Manager Developer Guide xiii

Table of Contents
Installation and Setup Instructions for MDM Web Service. 137
To Enable Custom Web Service in SampleApplication . 137
Sample Web Service Function in MDM . 137
Core Service Workflow . 145

Outgoing Third Party Web Service . 150
Third Party Web service - Request Format . 150
Third Party Web Service - Response . 151

Index . 154
Master Data Manager Developer Guide xiv

List of Figures
List of Figures

Figure 1: MDM Technical Architecture . 3

Figure 2: Solid Framework and Solution Components . 4

Figure 3: MDM Process Flow . 6

Figure 4: Connected Identity (CI) Uses for Various Workflows . 7

Figure 5: Sample Development Flow. 8

Figure 6: Development and Deployed Architecture. 9

Figure 7: Studio Architecture (High Level View) . 10

Figure 8: MDM Platform Architecture. 11

Figure 9: Development and Deployment relationship: MDM/RDM Server 12

Figure 10: Logical Deployment . 12

Figure 11: Application Server MDM Platform environment . 14

Figure 12: MDM Database Topology. 15

Figure 13: Logical Database Table. 16

Figure 14: Holistic Data View . 17

Figure 15: Master Data examples . 17

Figure 16: Service Setup-Setup Nature . 26

Figure 17: Service Setup-Setup Options. 27

Figure 18: Service Added . 28

Figure 19: Service Configuration—Archived Service . 29

Figure 20: Setup Options . 30

Figure 21: Run Configurations . 31

Figure 22: Classpath . 32

Figure 23: Service Setup-Setup Nature . 33

Figure 24: Service Setup-Setup Model Instance . 34

Figure 25: Service Setup-Setup Options. 35

Figure 26: Service Added . 36

Figure 27: Service Configuration—Existing Service . 37

Figure 28: Development Flow . 41

Figure 29: Data Quality related functionality. 42

Figure 30: Data Load Template Workflow . 43

Figure 31: Web Services Support—Incoming Web Service . 48

Figure 32: Web Services Support—Outgoing Web Service . 49
Master Data Manager Developer Guide xv

List of Figures
Figure 33: Sample Application Creation process . 52

Figure 34: Custom Application—Studio Project Files. 63

Figure 35: Custom Application—Insert Model . 64

Figure 36: Custom Application—Models and Dictionaries . 65

Figure 37: Service Setup—Setup Nature . 66

Figure 38: Service Setup-Setup Model Instance . 67

Figure 39: Custom Application Service . 68

Figure 40: Enter Database Name in Schema Config . 69

Figure 41: Folder Structure. 70

Figure 42: x2.properties file . 72

Figure 43: Solution Setup . 73

Figure 44: Introduction . 75

Figure 45: Choose MDM Installation Folder . 76

Figure 46: Deploy Custom Application/Change Password . 77

Figure 47: Database Settings . 78

Figure 48: Incorrect DB Information . 79

Figure 49: Choose Custom Application jar to Deploy . 79

Figure 50: Enter Project ID & Your Name. 80

Figure 51: Database Preparation. 81

Figure 52: Default Mode of Deployment . 82

Figure 53: Please Choose Mode of Deployment . 83

Figure 54: Install Complete . 84

Figure 55: New Group . 85

Figure 56: WSDL Input . 85

Figure 57: WSDL Input Dialog Box . 86

Figure 58: WSDL Input . 86

Figure 59: Import from Relational Database . 90

Figure 60: Import from ERwin. 91

Figure 61: Import from XDocs . 93

Figure 62: Define UI Navigation Structure . 95

Figure 63: RLDM Model and Customer Model relationship . 99

Figure 64: Sample Application process flow . 100

Figure 65: Overall CDI Process Flow . 100

Figure 66: Load Data . 101

Figure 67: Rule Type: SQL_Filter . 101

Figure 68: Rule Type: SQL_Validation . 102
Master Data Manager Developer Guide xvi

List of Figures
Figure 69: Rule Type: SQL_Validation with Severity WARNING. 102

Figure 70: Rule Type: SQL_Validation with Severity Error . 103

Figure 71: Rule Type: SQL_Insert . 104

Figure 72: LEGACY_CUSTOMER. 106

Figure 73: Customer Dashboard. 107

Figure 74: Customer Dashboard—Summary . 108

Figure 75: MDM Survivorship UI . 108

Figure 76: Interactive Merge Workflow UI . 109

Figure 77: Manage Customer workflow UI . 110

Figure 78: New Customer Introduction UI. 111

Figure 79: Define Service File . 112

Figure 80: Workflow to Publish Data. 112

Figure 81: CDI Process Flow (Trillium) . 113

Figure 82: Trillium CDI Process Flow . 114

Figure 83: Publication Services . 120

Figure 84: Publication Services Databases. 122

Figure 85: Database Tables . 123

Figure 86: Publication Object Audit Tables . 124

Figure 87: Publication Request Tables . 125

Figure 88: Publication Request Audit Tables. 126

Figure 89: WSDL Transform Input . 139

Figure 90: WSDL Transform Output . 141

Figure 91: MDM_Login_Page . 145

Figure 92: Welcome . 146

Figure 93: Add Details . 146

Figure 94: Get Details. 147

Figure 95: Details . 147

Figure 96: Modify Details . 148

Figure 97: Mass Update . 149

Figure 98: Mass Update . 149

Figure 99: WSDL Transform Input . 151

Figure 100: WSDL Transform Output . 153
Master Data Manager Developer Guide xvii

List of Tables

Master Data Manager Developer Guide xviii

List of Tables

Table 1: MDM Supported Teradata Data type Mappings . 16

Section A: —Developer Reference

Master Data Manager Developer Guide 1

SECTION A —Developer Reference

Section A provides link to the various chapters on Developer Reference.

• Chapter 1: “Teradata MDM Overview.”

• Chapter 2: “MDM Development Guidelines.”

• Chapter 3: “Development of an MDM Application.”

• Chapter 4: “Customer Service.”

• Chapter 5: “Training.”

• Appendix A: “Publication Services”

Chapter 1: Teradata MDM Overview
Product Overview
CHAPTER 1 Teradata MDM Overview

What’s In This Chapter

This chapter provides information about MDM Architecture and core framework.

Topics include:

• Product Overview

• Product Composition

• Business Architecture

• General Process

• Technical Architecture

Product Overview

Master Data Management refers to the methods by which clean, accurate, and consistent
master data are managed, referenced, and synchronized across the enterprise and made
available to users, as required. It may leverage policies and procedures for access, update, and
overall management of this central resource and its coordination with other participating
systems across the enterprise. The Teradata Master Data Management Product consists of
software assets that provide this functionality. In addition, the Teradata Professional Services
organization has a specific Master Data Management Solution Implementation Methodology.

Teradata MDM is built upon open standards (such as xml and Web Services) and provides the
capability to leverage existing IT and Business investments. The key to the MDM Platform is
its ability to enable flexible business process management by employing a Services Based
Architecture (SBA). It provides a powerful business programming environment to describe
business rules, workflows, and data models.

The MDM Product is composed of software, documentation, a reference application and
solution accelerators. The Teradata MDM product consists of a set of framework software
components that are installed in a development platform and in a run-time environment.

The Teradata MDM run-time product software is casually declared to be a 3-tier application.
The three tiers consist of the Teradata Database, an application server, and a client
workstation. The Teradata MDM product requires the Teradata database.
Master Data Manager Developer Guide 2

Chapter 1: Teradata MDM Overview
Product Overview
Figure 1: MDM Technical Architecture

There are two major components to Teradata MDM, Teradata Studio (MDM Design-Time
Development Environment), and MDM Server (MDM Run-Time Deployment Environment).

The Teradata MDM Studio is used to develop MDM applications. The MDM Studio provides
the developers with an environment that can define/ingest Data Models, build business
process workflows, create User-interfaces, import Web Services (which in turn can be used to
define touch points with external applications and used seamlessly within workflows).

Business process workflows are assembled in Studio to reflect any process flow. Standard
workflows are provided with the product for basic functions such as Data Upload. The
supplied Reference Application provides other examples of workflows which demonstrate the
various support functions. A workflow is primarily a business process that is required for the
Master Data. It may include a User-interface, as well as, any other function. MDM workflows
typically consist of both system-to-human interactions and system-to-system interactions.

User-Interfaces are contained in a workflow. All of the processing logic for the UI is
contained within this workflow, as well. The User-Interface itself is built within Studio
starting with defining a Page Layout (PGL) that is then customized using various PGL
constructs. The input and output Data Specification is defined in xml format and is correlated
to the layout at run time. X-Rules are used to process the data.
Master Data Manager Developer Guide 3

Chapter 1: Teradata MDM Overview
Product Composition
Figure 2: Solid Framework and Solution Components

The Data Models, Business workflows, and user-interfaces designed in MDM Studio are
deployed into the appropriate environment using the MDM Server. The MDM Server is a set
of Java services run on a Java Virtual Machine. It consists of a set of services (Locator, MDM
Server) that powers the data and process models built in MDM Studio. The MDM
Deployment Manager actually provides the support for moving a Studio built MDM
application into the appropriate target environment (Test, Production, etc.). The deployed
target environment must have Teradata and an application server. Refer to MDM Platform
Release Definition.

Product Composition

The Teradata Master Data Management Product is composed of Software, Documentation,
and a Reference or Sample Application. The Teradata MDM solution additionally contains
the Professional Services value add methodology, Best Practices, and Service resources.
Please refer to the following for inquiries into the MDM CoE.

Teradata Product Package contains 2 installations CD-ROMs.

• Teradata MDM Platform – Teradata Software

• Teradata MDM Platform – 3rd Party Software

The “3rd Party Software” Installation CD contains various Java 3rd Party and Open
Source Libraries (jar files) that must be extracted from the appropriate archive files (zip or
Master Data Manager Developer Guide 4

Chapter 1: Teradata MDM Overview
Business Architecture
tar.gz) before running the installation packages from the “Teradata Software” Installation
CD.

The Teradata Software consists of all of the user documentation in both PDF and HTML
formats, and all of the MDM Platform installable software packages. In the “\Install”
directory the installation includes MDM Studio, a Java, Swing-based, Windows only
Desktop/Workstation application. In addition, the installation package also includes the
Java, J2EE-based MDM Client and MDM Server, including all MDM platform services
and all of the necessary ‘run-time’ components that can be installed on the same
workstation as MDM Studio, or on a separate platform. Please note that there is a
Windows and a UNIX (AIX or Linux) installation package.

Refer to MDM Platform Release Definition for a detail description of each item.

Teradata MDM provides a ‘Solution Accelerator’ or Reference Application along with the
product. This sample application, “SampleCDIApplication” is included with the product
CD and is installed per instructions supplied. The purpose of the “Reference Application”
is defined as follows:

• Provide an example of the use of Key MDM 2.0 features

• Provide a consistent example application that is used for training, user guide
examples, and potentially a solution accelerator for customers interested in building a
Customer Data Integration application with our MDM product.

• Provide an example application that contains the Trillium API’s for Data Cleansing
and Matching.

The Reference or Sample Application is a defined CDI (Customer Data Integration)
Application. CDI is a comprehensive set of technology components, services, and
business processes that create, maintain, and make available an accurate, timely,
integrated, and complete view of a customer across lines of business, channels, and
business partners. Our sample CDI application can optionally utilize the Trillium Data
Quality Server to perform such functions as Cleansing, Matching, De-Duplication, etc.
This option utilizes an API to interface into the Trillium DQ Services. This Java API is
contained with the shipped product, but ordering, installing and configuring the Trillium
Data Quality Services are not included.

Business Architecture

The Business architecture is most important from the ‘Deployment’ perspective, but the
Development portion of the MDM Application must be successful, in order to attain a
successful Deployment. In this section, we shall describe the basic recommendations for
Development and Deployment, from the Business perspective.

We have utilized our Reference Application to provide a description of the architecture of our
MDM product from a Business Perspective.

The successful development of a MDM application is not unlike the development of any
other software application. There are basic development practices that should be followed
when developing an MDM Application, as well as any other application. With MDM, a Data
Master Data Manager Developer Guide 5

Chapter 1: Teradata MDM Overview
Business Architecture
Centric approach, coupled with Business Process analysis supported by Business users, and
with appropriate management support are all a must. Based upon experience our analysis,
design, and development teams have found that an iterative approach (with each iteration
between 16 and 20 weeks) has been most successful and is recommended (the 16 to 20 weeks
iteration cycle time will act as natural scoping). The common practice of Agile development
is also encouraged, as the Teradata Studio (MDM Development environment) lends itself to
agility, by definition. The Teradata Studio was designed to support a Data Modeling approach
with Data related workflows and then Rapid prototyping of the solution workflows and User
Interfaces.

This Business Architecture Diagram represents our Reference Application, CDI. It defines
the basic Business flow from Data Acquisition through Data Management workflows. In the
following section we relate these business functions to the appropriate feature of our MDM
Product.

Figure 3: MDM Process Flow

As with all development efforts proper planning and appropriate resources are key success
factors. Business sponsorship and approval are absolutely necessary, as it is the business
processes that will govern the Master Data.

Our Professional Services Methodologies have captured years of experience in successful
development efforts of MDM Applications and incorporated that experience into the Teradata
MDM Implementation Methodology. The MDM CoE has resources that are experienced and
successful in these development efforts. It is recommended to structure the solution
requirements into the following major work-streams:

• Source System Analysis

• Subscribing System Analysis
Master Data Manager Developer Guide 6

Chapter 1: Teradata MDM Overview
General Process
• Data Model Analysis (Logical and Physical Modeling)

• Data Integration (Web Services integration, EAI, etc)

• Data Validation, Business Rules and Data Quality requirements

• Data Management Workflow requirements

Refer to MDM Platform Studio User Guide for detailed information regarding the Studio
architecture, features, and functions.

General Process

The following diagram relates the basic functions of the Reference MDM application to the
high-level features of the MDM solution. All of the features represented below are designed
and built within the Teradata Studio environment. The Data Model is defined within Studio
and then the validation and Data Quality rules are created. The specific Business workflows
to perform functions such as Change Management are created for Data Stewards, and the
User Interfaces are then created. Once all of the ‘System’ is approved the application is
deployed into the appropriate environment. The diagram below represents the MDM
Application of CDI. Please note that with in this diagram we represent the ‘optional’ Trillium
usage for various functions.

Figure 4: Connected Identity (CI) Uses for Various Workflows

From a generic process perspective the following diagram represents a sample development
flow.
Master Data Manager Developer Guide 7

Chapter 1: Teradata MDM Overview
Technical Architecture
Figure 5: Sample Development Flow

Technical Architecture

In this section we provide Technical Architecture concepts and definitions. We shall begin
with a high-level technical architecture of the overall MDM Product, including the
development environment (MDM Studio) and the deployed application environment (MDM
Platform). This section is organized as follows:

• Overall Technical Architecture

• MDM Studio Architecture

• MDM Platform Architecture

• Database Topology

The following diagram attempts to place both the development and the deployed architecture
into a single graphical representation. Our MDM detailed user and administration guides will
provide more detailed descriptions.
Master Data Manager Developer Guide 8

Chapter 1: Teradata MDM Overview
Technical Architecture
Figure 6: Development and Deployed Architecture

MDM Studio is the development environment that is used to develop MDM Applications.
The Studio is a Java Swing Application that currently is installed on a Windows XP Pro or
2003 workstation. The Teradata database is required (Teradata 6.1, 6.2, or 12.0). With
Teradata 12.0 the Teradata database can be installed on the workstation if chosen to do so, that
is, the Demo version can be used to develop the MDM Application.

The heart of the MDM Studio resides with the utilization of XML (eXtended Markup
Language). In addition, extensive use of a services based architecture is embraced. MDM
Studio should not be mistaken for or compared to a full Integrated Development Environment
(IDE), as it was produced to only create MDM applications. The Studio User Guide contains
a complete description of the various features of the development environment.

As described in the diagram above, Studio has the capability to provide custom User
Interfaces, business workflows (Application layer) and the Data Model. Business Validations
rules can be defined, the workflows themselves, business logic, Web Services, etc, are all
supported and/or built with Studio. Once the MDM application (Applied MDM Solution) is
built the Deployment Manager can provide the support to migrate the appropriate assets, in
the appropriate form, to a targeted environment. The supported deployment environments
include Web Sphere or Web Logic, on AIX, Windows, Linux Operating systems. Internet
Explorer 6.0 is required for the MDM Application Client.

MDM Studio Architecture
The MDM Studio is the development environment for building MDM applications. MDM
Studio was initially built from a framework known as X-Core, hence many names are
prefixed with ‘X-‘. The intent of this framework was to build data centric workflows. The X-
Master Data Manager Developer Guide 9

Chapter 1: Teradata MDM Overview
Technical Architecture
Core framework intensely embraced the use of xml. You will note that in the detailed
documentation much of the terminology reflects the intense use of xml. The diagram below
depicts the high-level logical view of the Studio architecture:

Figure 7: Studio Architecture (High Level View)

At the core to the Studio architecture is the Business Document, referred to as the X-
Document. A Business document or X-Document instance is analogous to a HTML page. It
has properties (data) and relationships (navigable links) to other Business documents (or X-
Documents). The valid properties and relationships that an X-Document instance can have is
specified through an XML Specification, referred to as the X-Document Definition. The X-
Document Definition is analogous to a DTD (Document Type Definition) for that specific X-
Document instance. A DTD defines the legal building blocks of a xml document, including
the structure with a list of legal elements and attributes. The X-Document Manager manages
the X-Documents. Management of X-Documents includes:

• Creating, Modifying, querying and removing X-Document instances

• Navigating X-Document instances through specified relationships

• Adding a X-Document instance and its related instances in a single nested xml request

• Serving a X-Document instance and its related instances as a nested xml structure

• Finding X-Document instances through an xml based query

Business rules and actions in a workflow are supported through an xml based scripting
language known as X-Rules. X-Rules support the expression business logic on the X-
Document notifications and generic methods. A X-Rule has a condition and a set of actions.
The X-Rules Manager loads the X-Rules at start-up time and converts them into internal data
structures to ensure optimal execution. One or more rules can be associated to a workflow
step. The Rules interpreter will send all of the associated X-Rules whenever the workflow
step is activated. X-Rules Manager provide hooks to call Java code to perform complex
actions from within a X-Rule execution context.

The Transaction Manager is responsible for starting and ending transactions. Transaction
Manager creates a concrete implementation of Transaction Context interface. Transaction
Master Data Manager Developer Guide 10

Chapter 1: Teradata MDM Overview
Technical Architecture
context (i.e. transaction resources such as JDBC connections) is accessible by all X-
Operation components participating in the transaction.

The X-Workflow Manager is responsible for managing the movement of documents through
a workflow. The Workflow Manager matches the event nodes of the workflow instance to the
corresponding request or event by matching the request or event name and keys with the
event descriptor and matching keys of the event node respectively.

MDM Platform Architecture
The MDM Platform is defined as the target environment that a MDM Application is deployed
into. The physical environment is casually referred to as a 3-tier architecture. Once the MDM
Development is deemed acceptable or complete, the MDM Deployment Manager can be used
to migrate the software assets into the targeted environment.

The MDM is installed with Nginx proxy server which is the third party component. Nginx
proxy configuration enroute all the URL prefixed to the individual services like Data
Harmonization, Customer 360, Metadata in application server.

Hashicorp vault can also be installed in MDM Server. The vault stores password and other
secret information which Data Harmonization, Customer 360, and Metadata services used.

Figure 8: MDM Platform Architecture

Below diagram below depicts the general high-level description of the relationship between
the development and deployment environments:
Master Data Manager Developer Guide 11

Chapter 1: Teradata MDM Overview
Technical Architecture
Figure 9: Development and Deployment relationship: MDM/RDM Server

The MDM Platform is responsible for the MDM Web Application. The MDM Server runs on
the Application Server in conjunction with either Web Sphere or Web Logic. The Teradata
Studio development environment produces all of the various xml files that are required for an
MDM Application. The MDM server is the Java portion that will read and process all of the
xml files. The Deployment Manager will assist the user in migrating from Studio to any target
MDM Platform environment.

From a logical perspective, Studio provides the development environment and produces a
project and its associated services that becomes a MDM Web Application.

The diagram below represents what gets logically deployed into the MDM Platform.

Figure 10: Logical Deployment
Master Data Manager Developer Guide 12

Chapter 1: Teradata MDM Overview
Technical Architecture
The client of a MDM Application requires Internet Explorer 6.0 on the users workstation.
This workstation will access the MDM Web application on a Application Server that supports
Java based Web Services. The Application Server software can be either Web Sphere or Web
Logic. Refer to MDM Platform Release Definition document for specific versions and
recommended configurations. The deployed MDM application runs in the MDM Server set of
services. The database schema is created as part of the deployment process and supported by
Deployment Manager.

The MDM Server code is deployed on the application server and the MDM “.war” files are
deployed into the Application server.

The Server Physical System should be configured per our recommendations. Our Teradata
MDM Product strategy is to fit within the configuration models that are defined by the
respective Application servers. The MDM Server does not heavily depend upon functionality
provided by the application servers, at this release time.

We deploy a MDM .war file into each respective Web Server for each MDM Server that is
desired to run on the specific server. You may have multiple MDM servers executing,
although they will require a distinct port number. For each MDM Server a distinct MDM .war
file is placed, appropriately into the Web Server.

The MDM Server can be considered a X-Server, but additionally, containing all of the pre-
built MDM elements (i.e. standard workflows) for a MDM application. It is executing in a
single Java Virtual Machine (JVM). The MDM Server is the Runtime Processing engine for
the X_Servers.

A X_Server is an instance of a MDM application, again, running in a single JVM. It is the
run-time deployment of the application developed using MDM Studio. The X_Server
manages the various X_Services that were produced from Studio for the specific MDM
application. The X_Server is considered a ‘stateless’ server.

An X-Service is a component of the MDM application. It can be considered a specific
Business contract which would be analogous to a business function. A X_Service contains
one or more workflows that together form a logical function or unit. The diagram below
represents the basic Application Server MDM Platform environment:
Master Data Manager Developer Guide 13

Chapter 1: Teradata MDM Overview
Technical Architecture
Figure 11: Application Server MDM Platform environment

MDM Database Topology
In the previous versions of the Teradata MDM product there was a single database in which
all MDM tables were located. That is, all Input Staging, Net Change, Error, Master, and
Output Staging were all defined to be in a single Teradata database. With MDM 2.0 a new
database topology is being introduced. Please note current MDM implementations need not
change their topology.

The MDM database instance can contain separate and distinct databases to house the various
permutations of tables as they are related to services. There will be logical databases for
which the user can assign names conferment to their naming conventions.

The following diagram below provides a description of that topology:
Master Data Manager Developer Guide 14

Chapter 1: Teradata MDM Overview
Technical Architecture
Figure 12: MDM Database Topology

The MDM 2.0 product does not require strict adherence to the new topology. The topology
can remain as in Pre-MDM 2.0, except for the newly introduced feature databases such as,
Hierarchy Management (MDM_HM), Publication (MDM_PUB), and Audit (MDM_PUA).

With Teradata MDM 2.0, during installation of an MDM instance, the install script will
prompt for the physical names that will be used at that customer’s site that correspond to the
function database. The number and purpose of the databases to be created is a function of the
Service to be offered in this MDM instance. This permits flexibility in data location. Using
this schema the customer may choose to either consolidate all tables into a single database or
have them spread across several databases or some intermediate combination.

The Metadata table SYS_DB_MAP contains the mapping of the logical db to the physical db.
This information has to be ingested into the SCHEMA generation code so that the generated
XML contains the appropriate table location. Likewise the generation of the staging tables
needs to have this information to create the tables in the appropriate databases. Outward
pointing primitive views resident in MDM_Main reference the tables in the dispersed
Database topology.

The following table describes the various logical Databases being introduced:
Master Data Manager Developer Guide 15

Chapter 1: Teradata MDM Overview
Technical Architecture
Figure 13: Logical Database Table

Table 1: MDM Supported Teradata Data type Mappings

MDM Studio Teradata Database

BOOLEAN CHAR(1)

CHAR CHAR(N) CASESPECIFIC

CLOB CLOB

DATE DATE

DECIMAL DECIMAL(n,m)

DOUBLE FLOAT

ENCRYPTED STRING VARCHAR(n)

FLOAT FLOAT

INTEGER INTEGER

STRING (<64000) VARCHAR(n) CASESPECIFIC

STRING (>63999) CLOB

TIMESTAMP TIMESTAMP(0)

XML VARCHAR(n)
Master Data Manager Developer Guide 16

Chapter 1: Teradata MDM Overview
Technical Architecture
Data Architecture
Description of the data aspects of the product, that is, what data is located where.

Figure 14: Holistic Data View

Examples of Master Data include:

Figure 15: Master Data examples
Master Data Manager Developer Guide 17

Chapter 2: MDM Development Guidelines
Overview
CHAPTER 2 MDM Development Guidelines

What’s In This Chapter

This chapter provides guidelines for development in MDM.

Topics include:

• Overview

• Model Development

• Business Logic Customizations

• User Interface Customizations

• Reuse of Code Modules

Overview

The Teradata MDM Application is based on a Service Oriented Architecture (SOA)
composed of multiple loosely coupled services.

Each Service has the following development facts associated with it:

• Model

• Workflows

• Rules

• Validations

• Static Data

• Data Persistence Rules

The key service in MDM is the master data management service technically called
BCM_MASTER. This service provides the capabilities around input staging, net-change and
output staging.

Model Development

The MDM Model is composed of entities, relationships and their associated facets. All
aspects of a model can be customized via the MDM Studio.

Model Naming Conventions
• Documents (Tables) and Properties (Columns/Attributes)
Master Data Manager Developer Guide 18

Chapter 2: MDM Development Guidelines
Model Development
• Document logical names and the logical names of the properties (columns) are defined
in upper camel case example: Item, ItemLocationMaster. The logical names should
convey as much semantic meaning as possible. Exceptions to this are industry
standard names like EANNumber etc.

• The physical names should be all upper case and should be abbreviated and logical
parts should be separated by _ (underscore). The vowels and repeating letters can be
dropped in this e.g. logical property ForecastQuantity can have a physical name of
FRCST_QNTY.

• All properties should ideally use a data dictionary type. This enables consistent type
semantics.

• Keys

• The logical name of the keys should be in lower camel case. The recommended
naming conventions for the various types of keys are as below:

• Primary Key: Use the suffix _pk

• Unique Key: Use the suffix _uk

• Index: Use the suffix _idx

• The physical names should be prefixed by PK_, UK_, IDX_.

• Links

• The logical name of the link which points from the child to the parent entity should be
of the form roleName<childEntityLogicalName>To<parentEntityLogicalName>.

• This will make sure that just by looking at the document link you can understand the
relationships. Here the roleName is the role played by the child in this relationship
with parent.

• The reverse link should be of the form
<role><parentEntityLogicalName><childEntityLogicalName>

• Facets

• The facets are mostly check boxes corresponding to design time flags.

• For display names, the name suitable to that deployment should be provided.

• For Physical table names, the same coding conventions/standards can apply which
apply for Physical table names.

Model Customization Guidelines
• New Documents/Tables that are added for that deployment should be defined in the

Model Instance of the customized service.

• The new table logical names should be prefixed with UD (short form for User Defined)
and similarly the physical name for these should be starting with UD. This provides easy
demarcation of product versus customized entities.

• Any properties that are added as a part of the customization should also be prefixed with
ud, and physical column names with UD.

• These tables could reference a data dictionary which is defined for these new tables or
existing data dictionaries provided in MDM.
Master Data Manager Developer Guide 19

Chapter 2: MDM Development Guidelines
Business Logic Customizations
• Customizations should be additive in cases where behavior reuse is expected.

• Customizations can be subtractive in cases where existing business logic is not going to
be used and new logic is being introduced.

Business Logic Customizations

Workflows
A service can have multiple workflows corresponding to the business processes owned by
that service. Workflows can be triggered by events and can wait on events. Workflows can
carry out tasks which are executed by rules.

Coding Convention
• The workflows are placed in the Workflows folder of the service. The workflow file name

is recommended to be wf<Service/ModuleName><ProcessName>.xml.

Example: wfManufacturingSupplyChainSetup.xml

• Nodes in the workflow should be logically named based on the business task or event of
the workflow.

Example: approveItem

• UI Nodes should be named based on the logical screen name.

Rules
A service can have various rules corresponding to the business logic. The rules can
correspond to the public API which can be invoked from other services/external systems or
private rules API which can only be invoked from the service.

Coding Convention
• The file which contains rules should be named like rule <Service/

ModuleName><Entity><Functionality>.xml.

Example: ruleManufacturingBOMManagement.xml

• Individual Rules should be based on the functionality.

Example: saveBOM, getBOM, deleteBOM

Validations
A rule which is executed upon request can have validations that need to be executed.

Coding Convention
• The validations can be split by request/rule/functionality and can be named as

vldn<Service/ModuleName><Entity><Functionality>.xml.
Master Data Manager Developer Guide 20

Chapter 2: MDM Development Guidelines
User Interface Customizations
DataPersist Rules
This capability allows declarative specification of persistence rules for an entity in terms of
what the create, edit, delete, massupdate api is, what the associated validations are and what
alerts need to be raised on success/failure. This mechanism is used in TableEditors and back
end data loading.

Coding Convention
• The specification is specified in a single file.

• The file name should be of the type datapersist <servicename>.xml.

Example: datapersistManufacturing.xml

Additional Best Practices on Business Logic Customizations
• Customizing Workflows/Rules/Validations/DataPersistRules/Data

• This is recommended to be prefixed by the customer/projectName/ud.

• Studio creates a separate custom service folder to keep the customizations.

• Using custom service, models and behavior can be inherited and customized.

User Interface Customizations

X2 based
The reference screens packaged with MDM are based on X2. X2 is based on commands
which are written in XML script in the .cnd file, and JSP and XSL wherein JSP acts as a
container for the cnd to XSL binding. XSL is used to render the XML data that the server
returns. It is recommended to use PGL for new UI development.

Coding Convention
• Example: For Resource UI, package your code as follows:

..\bcmclient\bcm\resource\resourceDetail.jsp for JSP code

..\bcmclient\bcm\resource\xsl\ for XSL code

..\bcmclient\WEB-INF\bcm\model\bcm\resource for cnd code

Typically there are two .cnd files associated with every page. The view.cnd which generates
XML related to rendering the page and controller.cnd which contains the commands related
to button actions. The folders can have subfolders which have similar structures for
separation by functionality.

To customize an X2 based user interface, the following steps are recommended:

1 The customization can involve .cnd files, the .jsp files or .xsl files.

• For .cnd file customization, similar custom directory structure can be created under
bcmclient\WEB-INF\<customer> and the whole .cnd file can be overridden. The
model-attribute.modelpath needs to be modified in WEB-INF\classes\x2.properties.
Master Data Manager Developer Guide 21

Chapter 2: MDM Development Guidelines
User Interface Customizations
• For JSP and XSL files their references can be modified in pages.cnd located in WEB-
INF\bcm\model\bcm and the corresponding JSP's along with the xsl's can be
overridden in the customer directory.

Example: bcmclient/<customer>

PGL based
The UI workflows which are part of the UI_WORKFLOW service should only contain the UI
processing logic/validations and should be named as
uiWf<ModuleName><ProcessName>.xml.

Example: uiWfManufacturingSupplyChainSetup.xml

• This workflow captures the flow between pages which have a PGL associated with it. The
PGL file can have <ModuleName>PageName.pgl as the name of the file.

• This workflow can callout rules which are again named as any other rule. The UI
workflow should callout a rule on the UI_WORKFLOW service which should just do
presentation logic. The rule should further callout to a back-end service for server side
business logic.

To customize a PGL-based user interface, the following steps are recommended:

1 The customization done can involve the workflow files, the .PGL files or the rules
associated with the workflow.

2 The workflow can be redefined in the customization either by redefining the whole
workflow with the same name or at a rule level where the rule that gets called is
overridden.

3 The name of the workflow file, pgl file and the rule file that gets overridden should be
prefixed by customerName/Project Name/ud.

Best Practices - PGL based UI Workflow Development
• The code in the workflow should not have extensive business logic.It should ideally just

be a call to various methods which actually implement the business logic.

• All requests to the respective services (bcminputstaging, bcmmaster etc.) should happen
using the UI rules or subworkflows.

For example the following code is not advisable to be written in the workflow:

<IF_TEST Test="count ($suppIDDocVar/*)!= 0">
 <THEN>
 <GET_DOC_SMART Name="Supplier" ServiceName="BCM_MASTER"
AssignToVar="suppliersDocNameVar">
 <TO_XML DocVar="suppIDDocVar"/>
 </GET_DOC_SMART>
<XML_SORT SortKey="supplierID/@Value" DataType="String"
AssignToVar="suppliersDocNameVar">
 <TO_XML SelectList="$suppliersDocNameVar/*"/>
 </XML_SORT>
 </THEN>
 <ELSE>
 <TO_DOCVAR AssignToVar="suppliersDocNameVar">
Master Data Manager Developer Guide 22

Chapter 2: MDM Development Guidelines
User Interface Customizations
 <ROOT/>
 </TO_DOCVAR>
 </ELSE>
</IF_TEST>

Note: The code above must always be written in an API and the API can be invoked using UI
rule.Workflow should never have code which makes db calls.

The code above can be written like:

<IF_TEST Test="count ($suppIDDocVar/*)!= 0">
 <THEN>
<REQUEST Name="getSortedListOfSuppliers" AssignToVar="
suppliersDocNameVar"

<TO_XML DocVar="suppIDDocVar"/>
</REQUEST>

 </THEN>
 <ELSE>
 <TO_DOCVAR AssignToVar="suppliersDocNameVar">
 <ROOT/>
 </TO_DOCVAR>
 </ELSE>
</IF_TEST>

The rule getSortedListOfSuppliers is a UI rule and this rule calls an API, which actually does
the GET_DOC part.

The UI rule should ideally look like the following:

<DEFINE_METHOD Name="getSortedListOfSuppliers">
<RULE>

<ACTION>
<REQUEST Name="getListOfSuppliers" ServiceName="BCM_INPUT_STAGING"
AssignToVar="listOfSuppliers">

<TO_XML SelectList="$thisParam/*"/>
</REQUEST>
<ADD_CHILDREN DocVar="thisReturn" FromSelectList="$listOfSuppliers/*"/>

</ACTION>
</RULE>

</DEFINE_METHOD>

The API which actually does a database operation looks like the following:

<DEFINE_METHOD Name="getSortedListOfSuppliers">
<RULE>

<ACTION>
<GET_DOC_SMART Name="Supplier" ServiceName="BCM_MASTER"
AssignToVar="suppliersDocNameVar">
 <TO_XML DocVar="suppIDDocVar"/>
 </GET_DOC_SMART>
<XML_SORT SortKey="supplierID/@Value" DataType="String"
AssignToVar="suppliersDocNameVar">
 <TO_XML SelectList="$suppliersDocNameVar/*"/>
 </XML_SORT>
<ADD_CHILDREN DocVar="thisReturn" FromSelectList="$ suppliersDocNameVar
/*"/>

</ACTION>
</RULE>

</DEFINE_METHOD>
Master Data Manager Developer Guide 23

Chapter 2: MDM Development Guidelines
Reuse of Code Modules
Note: Writing code in the above manner ensures modularity and promotes re-use. Putting
business logic into the workflow reduces the modularity and maintainability.

Alternate method of writing UI workflows
• The previous approach to writing UI workflows was to have calls to various rules using

UI rules from the workflow.

• A more intuitive way of writing workflows can be to have sub workflows being invoked
from the main workflow.

• The sub workflow can be invoked like how any other API is invoked. This method is
more visually intuitive as the workflow can be viewed and the flow is easily understood.

Example:

This is how a sub workflow is invoked from a workflow. The name of the sub workflow is
"createPO".

<REQUEST Name="createPo" ServiceName="ORDER_ADMIN"
AssignToVar="response" HandleException="yes">
 <TO_XML SelectList="$currentOrder"/>
</REQUEST>

To enable the sub workflow to be invoked from a workflow, the following must be done.

<workflow mgcCount="489" ShowInBreadCrumbs="true" Version="1.00.01"
Name="poCreateWf" Description="true">
 <variables>
 <variable Name="lockingNeeded" Type="string" Comment=""/>
 <variable Name="poDoc" Type="xml" Comment=""/>
 <variable Name="keepIds" Type="boolean" Comment=""/>
 </variables>
 <nodes>
 <start Name="start2" Descriptor="createPo" IsDefault="false">
 <actions>
 <action Name="assign PO Doc">
 <SET Var="poDoc" FromValue="{$thisParam/ORDER}"/>
 <SET Var="lockingNeeded" FromValue="{$thisParam/
LOCKING_NEEDED/@Value}"/>
<SET Var="keepIds" FromValue="{boolean($poDoc/KEEP_IDS/@Value,
false())}"/>
 </action>
 </actions>
 <next_nodes>
 <next_node Name="AcquireLocks" Description=""/>
 </next_nodes>
 </start>

Reuse of Code Modules

The benefits of reusing code are obvious. For every application you can reuse the generic
functions that you created for the one before. This saves time, improves the features in your
program, and generally makes for more cost-effective programming. As your libraries grow it
becomes easier and easier to lay the framework for more sophisticated applications, without
any effort at all. Most third party products employ this philosophy, but section explores how
you can take advantage of these features in MDM.
Master Data Manager Developer Guide 24

Chapter 2: MDM Development Guidelines
Reuse of Code Modules
The MDM uses the concept of service for execution of workflows. This service is also called
as XService. A service satisfies a specific business contract. For example, an Order Capture
service caters to workflows for capturing customer orders. Multiple services along with a UI
make up a business application. The XService consists of XDocuments and XRules. A single
instance of the MDM can deploy multiple XServices. You can create the following types of
service:

• Model Based—the model based service is a standard MDM service type which can be
used to build an application.

• MDM Based—the MDM based service is a service type which is customized for the
MDM application. MDM related functions such as automatic creation of Input staging,
NetChange staging, and Output staging child-services are available in this type of service.

• Document Based—the document based service is a service which uses the X-Documents
for schema definition. You can insert documents and document views in this type of
service. This helps in the backward compatibility of document-based services developed
with earlier versions of MDM. You can view a list of archived service with this kind of
service.

Creating Reusable Modules
Perform the following steps to create reusable module:

1 Packaging jar file

• Create a service using MDM studio

• Insert workflow files, rule files and customize

• Archive it as a jar file

2 Reusing packaged jar file

• Import service from archive file

• Setting class path for newly created service

Packaging Service as jar for Reusing
Document based Service

Perform the following steps for packaging service as jar for reusing:

1 Create a document based service using MDM studio

• Open MDM studio and create a document based service. Refer Chapter 4 Process
Modelling in MDM Platform Studio User Guide for details.

The Figure 16 and Figure 17 displays the steps involved in creating a document based
service.
Master Data Manager Developer Guide 25

Chapter 2: MDM Development Guidelines
Reuse of Code Modules
Figure 16: Service Setup-Setup Nature
Master Data Manager Developer Guide 26

Chapter 2: MDM Development Guidelines
Reuse of Code Modules
Figure 17: Service Setup-Setup Options

The Figure 18 displays the service added in the left navigation pane. Double-click on
the added service and in the right pane, configure the Logger details accordingly.
Master Data Manager Developer Guide 27

Chapter 2: MDM Development Guidelines
Reuse of Code Modules
Figure 18: Service Added

2 Insert workflow files, rule files to the newly added service and customize as per
requirements.

Refer Chapter 4 Process Modelling in MDM Platform Studio User Guide for details.

3 Archive service as a jar file.

• Add SERVICE_NAME.xml from MDM_Install_Directory/custom/
APPLICATION_NAME/cfg/properties/ to folder MDM_Install_Directory/custom/
APPLICATION_NAME/cfg/xservice/SERVICE_NAME and zip the SERVICE_NAME
folder.

• Rename the zip file as SERVICE_NAME.jar

• Save the newly created jar file to MDM_Install_Directory/custom/lib.

Reusing Packaged jar File
Perform the following steps to reuse the packaged jar file:

1 Import document based service from archive file.

Figure 19 and Figure 20 displays the steps involved.
Master Data Manager Developer Guide 28

Chapter 2: MDM Development Guidelines
Reuse of Code Modules
Figure 19: Service Configuration—Archived Service
Master Data Manager Developer Guide 29

Chapter 2: MDM Development Guidelines
Reuse of Code Modules
Figure 20: Setup Options

The left navigator displays the added document based service.

2 Setting class path for newly created service

• Start MDM server through studio.

• On the MDM Studio, click Run menu and select Run Configurations.

The Run Configurations window (Figure 21) is displayed.
Master Data Manager Developer Guide 30

Chapter 2: MDM Development Guidelines
Reuse of Code Modules
Figure 21: Run Configurations

• On the Run Configurations window (Figure 21), insert new configuration and select
the server from the Select XServer File drop-down and select the required services
from the Select Services pane and click Classpath tab as in Figure 22.
Master Data Manager Developer Guide 31

Chapter 2: MDM Development Guidelines
Reuse of Code Modules
Figure 22: Classpath

You can add classpath files, delete and rearrange the classpath files using the
appropirate buttons.

• If the MDM server is started through command line, add respective jar file to class
path in bcmenv.bat and add new service name in startServices.bat.

Note: Make sure that you have added the new service in your war file (for web
sphere).

Packaging Service as jar for Reusing
MDM Based or Model Based Service

Perform the following steps for packaging service as jar for reusing:
Master Data Manager Developer Guide 32

Chapter 2: MDM Development Guidelines
Reuse of Code Modules
1 Create a MDM based or model based service using MDM studio

• Open MDM studio and create a MDM or Model based service. Refer Chapter 4
Process Modelling in MDM Platform Studio User Guide for details.

The Figure 23 to Figure 25 displays the steps involved in creating a MDM based
service.

Figure 23: Service Setup-Setup Nature
Master Data Manager Developer Guide 33

Chapter 2: MDM Development Guidelines
Reuse of Code Modules
Figure 24: Service Setup-Setup Model Instance
Master Data Manager Developer Guide 34

Chapter 2: MDM Development Guidelines
Reuse of Code Modules
Figure 25: Service Setup-Setup Options

The Figure 26 displays the service added in the left navigation pane. Double-click on
the added service and in the right pane, configure the Logger details accordingly.
Master Data Manager Developer Guide 35

Chapter 2: MDM Development Guidelines
Reuse of Code Modules
Figure 26: Service Added

2 Insert workflow files, rule files to the newly added service and customize as per
requirements.

Refer Chapter 4 Process Modelling in MDM Platform Studio User Guide for details.

3 Archive Model based or MDM based service as a zip file

• Create a temp folder.

• Create cfg/properties folder under temp folder.

• Copy APPLICATION_BASE/cfg/properties/SERVICE_NAME.xml to temp/cfg/
properties folder.

• Create a folder called xservice under temp folder.

• Copy APPLICATION_BASE/cfg/xservice /SERVICE_NAME folder to temp/xservice
folder

• Zip temp/xservice folder as SERVICE_NAME.jar.

• Create a folder called lib under the temp folder, cut and paste the
SERVICE_NAME.jar file into it

• Optionally delete temp/xservice folder since its no longer required.

• Zip temp/cfg and temp/lib folder as SERVICE_NAME.zip.

Note: Models can't be packaged as zip files, so all the model related files need to be
copied manually to the new respective location.
Master Data Manager Developer Guide 36

Chapter 2: MDM Development Guidelines
Reuse of Code Modules
Reusing Packaged jar File
Perform the following steps to reuse the packaged jar file:

1 Unzip service file—unzip SERVICE_NAME.zip to respective APPLICATION folder

Make sure to extract the files to lib and cfg/properties folders. Figure 27 displays the
option of selecting MDM based service from the existing service.

Figure 27: Service Configuration—Existing Service

The remaining steps remains the same as above. The left navigation pane displays the
newly created service. For more details steps, refer to MDM Platform Studio User Guide.

2 Setting class path for newly created service—see step 2 in section “Reusing Packaged jar
File”
Master Data Manager Developer Guide 37

Chapter 3: Development of an MDM Application
Overview
CHAPTER 3 Development of an MDM
Application

What’s In This Chapter

The purpose of this Chapter is to provide the known Best Practices, Key Considerations, and
Recommendations. Development practices, procedures, and methodologies may be different
at any given customer site. The intent of this developers guide is to not replace or change any
practices/methodologies, but rather, to relate MDM to those practices. The Teradata MDM
Solution provides a proven development and implementation methodology with the Teradata
MDM Center of Expertise (MDM CoE). Teradata recommends engaging the MDM CoE for
everything from consulting, planning, execution, and delivery. Specific topics in this chapter
include:

Topics include:

• Overview

• Building an Application in MDM Studio

Overview

This section describes the Key considerations and recommendations related to the scoping of
a MDM Implementation, Best Practices in the Planning of a MDM Implementation, Skill Set
Recommendations, Best practices in Managing a MDM implementation, References to
Teradata Methodologies, and general Recommendations and Best Practices.

Scoping an MDM Application
There are obviously many different techniques and considerations when determining the
scope of any application. Regardless of the technique to define the scope of the MDM
implementation, the scope should be aligned directly to the MDM Strategy. The MDM
Strategy should embrace the Business Analysis. The Business Analysis must define the
Goals, Objectives, Business Improvement Opportunities, Critical Success Factors, Key
Performance Indicators, and any Constraints. The Business Strategy, Business Requirements
and MDM Implementation Plan must be understood and agreed upon before development
begins. Teradata MDM implementations utilize the Proof of Concept (POC) engagements to
facilitate this understanding and planning. The Teradata Professional Services MDM
implementation methodology has been created and proven to support this approach, with both
processes and resource experience.
Master Data Manager Developer Guide 38

Chapter 3: Development of an MDM Application
Overview
Planning an MDM Application
Project planning for a MDM implementation is equivalent to most all business application
development efforts. The utilization of the Teradata MDM Studio and taking advantage of its
capabilities provides an agile iterative approach to the development itself. The Teradata
MDM Studio development capabilities should be embraced within the project plan. For
instance, MDM Studio typically starts with creating/defining the Data Model that will be used
for the application and workflows, therefore organizing the project plan to define and create
the Data model should be scheduled before UI’s are built. Furthermore, if an Erwin data
model is available for the desired subject area, then planning to ingest this model through the
Open Model Ingestion (OMI) feature should be planned. Refer to MDM Platform Studio User
Guide for details on the approach. Basic planning tasks such as review cycles, test plans,
deployment planning, and application development milestones still must be incorporated into
the project plan. Major project milestones such as requirements definition, design,
development, test, integration, documentation, operational implementation are always
required.

As Teradata MDM implementation is very centric to an Enterprise Data Warehouse
implementation. Project planning steps or activities should consider orientation to Data
Subject areas, data quality for that data and then the business processes pertaining to the
subject area and in the scope of the MDM implementation.

When building the MDM implementation plan the following skill sets requirements should be
sought.

Skill Set Requirements
A Teradata MDM Implementation requires minimally the following skill sets:

• Project Manager

• Solution Architecture

• Technical Leadership

• Business Modeling

• Data Modeling

• Analytical Modeling

• MDM Application Development

• Teradata Database

The experience for each of the above skill sets will impact the success and risk factors of the
MDM implementation proportionally.

Additional skill sets include:

• Workflow Design and Development

• Web Based Networking and Administration

• Test Specifications and Planning

• Target Systems Interface Planning (i.e. SAP XI)

• Security Administration
Master Data Manager Developer Guide 39

Chapter 3: Development of an MDM Application
Building an Application in MDM Studio
The Teradata Professional Services team provides these experienced skill sets.

Recommendations and Best Practices
The following can be generalized high-level best practices for any MDM implementation:

• Ensure Business User involvement and acceptance wherever possible. The most successful
MDM implementations include Business owners are dedicated to the MDM
implementation.Understand the Data Model and the Data Requirements - Understand the
Data Quality requirements and implement as much as practical in the data load process,
also known as End-to-End (e2e).

• Utilize the power of Teradata wherever applicable. For example, in the various data load
workflows use either DB_Persist or DIRECT_SQL_LOAD wherever possible. Even in
Table editors use DO_DB_Persist.

The supplied DataLoad Workflow should be re-used or considered the template for all
Data Load workflows.

Use Teradata Stored Procedures in ‘batch’ oriented workflows for complex rule support,
by invoking the Stored Procedure Node.

• Use the MDM 2.0 a Sample Application is provided. This application contains examples of
the major or key features of the MDM Studio usage and the MDM Platform itself. Use
this application as a solution accelerator wherever possible.

The Sample Application contains the capability to invoke a Trillium API, provided that
the appropriate Trillium software is installed.

• Keep the business workflows simple. Workflows can call or embed other workflows.
Exploit this capability to re-use basic nodes or business processes.

Building an Application in MDM Studio

Overview
Teradata Studio is the development or design-time component for designing, building,
debugging, and maintaining MDM workflows, Data models, and User-Interfaces that
together define a Business process, which become a MDM Application. The MDM Studio is
a Java Swing application that enables the development team to create a MDM application.
The Teradata Studio utilizes a ‘project’ based approach to defining the various components of
a MDM Application. The project structure is detailed implicitly in the directory structure that
contains all of the various xml files.

The basic flow of the development effort in Studio, starts with defining the Data Model. The
Business Requirements are defined, including the various Process steps and business logic.
Once these requirements are understood, the development of the Workflows, and User
Interfaces can occur. After the workflows and UIs are approved, they can be migrated to a
target environment, via Deployment Manager, for further QA testing or possibly Production.
Master Data Manager Developer Guide 40

Chapter 3: Development of an MDM Application
Building an Application in MDM Studio
Figure 28: Development Flow

The general flow of development within Studio starts with defining or creating the data model
that will be used by the application. The data model can be defined explicitly by Studio, or
you can ingest an Erwin mode, or import Teradata database table definitions.

The incoming data can come from internal EDW database(es)/tables or any external
system(s) via a file. The file can be supplied by an ETL tool or Teradata Utility. These files
are known as ‘Source’ data and will ‘land’ in the MDM Input Staging area. The tables defined
in the MDM Input staging are defined/generated when the schema generation (Full or
Incremental) process was executed in Studio. Master Data Records can come from other
‘Source’ systems in a ‘batch’ load manner via Input Staging, or they can be created in Data
Steward User Interfaces, or MDM application provided Table Editors, or they can be brought
in through defined API’s, Web Services or Excel.

Once a Data model is defined, ‘Validation’ rules are typically defined. Validation Rules can
be defined with levels of severity, from Soft errors (Warnings) to highest severity. Typically,
‘Warnings’ can still be considered Master Records and continue processing, while the rest are
sent to Error Tables. These validation rules define ‘what is’ the proper or accepted quality of
the in incoming Data. The Business Rules User Interface is provided in Studio, as well as,
with the MDM application. This Rules builder provides a generalized mechanism to create
SQL based validation rules on MDM specific tables. Please note that use of xml via a xml
template for validation rules is still supported.

Teradata MDM provides Data Quality Reporting and Data Quality Monitoring capabilities.
Data Quality Reports provide insight into the Quality of records received, typically from
source systems, that are defined to be severe. These records are placed into the corresponding
Error Table. The Data Quality Monitoring provides insight into Master records that have
‘Warnings’ due to quality issues or validation rules.

Both Data Quality Reporting and Data Monitoring on MDM Application provided functions,
they are not necessary to ‘build’ in Studio. The diagram below represents a high-level
description of the Data Quality related functionality of MDM:
Master Data Manager Developer Guide 41

Chapter 3: Development of an MDM Application
Building an Application in MDM Studio
Figure 29: Data Quality related functionality

After the data (or any ‘designed’ / subset of the data model) is placed in the MDM Staging
area, a Data Load workflow can be executed. A standard or ‘Template’ Data Load workflow
is provided with the product. The Input data is processed via the Data Load workflow.
Validation rule successful records are sent to the Net Change tables. The records from these
tables are then ‘UPSERTED’ into the appropriate Master tables. Please note that Input
Staging, Error, Net Change, and Master tables all are defined through Schema generation. All
have the same Primary Key structure except the Error tables, hence all of these table receive
the benefits of Teradata’s architecture.

The diagram below represents the Data Load template workflow:
Master Data Manager Developer Guide 42

Chapter 3: Development of an MDM Application
Building an Application in MDM Studio
Figure 30: Data Load Template Workflow

It is recommended that validation rules for the large or bulk data that is sourced from other
systems utilize a ‘Data Load’ workflow and the ‘DO_DB_Persist’ or DIRECT_SQL_LOAD
nodes to load data.

Data Load Workflows can be constructed for every table or a combination of tables, based
upon the design of the MDM application, which in turn, is based upon the business
requirements and source system constraints. The most important consideration is to ensure
that once the ‘records’ have passed the Data Load they are ‘ready’ for any subsequent
processing or reporting. For each node represented above, examples can be found with the
MDM Sample application.

The Business requirements should define the Business processes and the Business Logic or
Rules that are required for the MDM Application. The business process will be supported via
Workflows and within the workflows there may be API’s, Web Services, events, User
Interfaces and other supported services. In addition, a workflow can call or embed other
workflows. These capabilities ensure that the Teradata MDM workflows can satisfy every
business requirement. The workflows are created in Studio, as well as any other service. The
“Section B—Sample Application” and MDM Platform Studio User Guide contain an
exhaustive detail list and descriptions of all of the various feature and functions provided.

It is recommended that the Business processes and logic/rules are defined in business terms
during the requirements definition phase of the project. They should be defined in business
terms and free from any perceived technological constraints. They should taken into the
consideration the owners or responsible functions desired process and approvals, as
applicable. The reasoning behind this is one of the value differentiates of the Teradata MDM
product. That is, functional extensibility through our Open Services Oriented Architecture
where MDM Studio supports the development and usage of Web Services, Java Code, and
APIs.
Master Data Manager Developer Guide 43

Chapter 3: Development of an MDM Application
Building an Application in MDM Studio
MDM Studio provides the developer with the capability to develop and employ Workflows,
User Interfaces, Web Services, Java Code, API’s, as well as supplied functionality. The
creativity of the developer should only be molded by the business requirements of the
application. As stated previously, the Teradata MDM product provides a Sample Application
that contains examples of the key functionality of the product.

In order to understand the landscape of creativity the various MDM elements, their
operations, and MDM Services are highlighted below. This section is intended to be an
overview. Refer to the detailed documentation for further information.

MDM Studio provides a significant amount of functionality and features that enhance the
development experience. The functionality can be organized into MDM elements. Each of
these MDM Elements are defined by xml schemas and are located in the appropriate directory
structure(s) within Studio.

MDM Development Elements
• X-Documents: Description of the Data model or documents in the system

• X-Rules: Definition of the Business Rules relative to the X-Documentation

• X-Operations: Definition of the various operations that are supported

• X-Path: Contains a compact, non-xml syntax to facilitate use within URLs and xml
attribute values. X-Path operates on the abstract, logical structure of an xml document.

X-Documents
The primary purpose of X-Documents is to:

• Provide the basis for database schema referential and integrity constraints

• Provide transparency to the physical database, as the xml specification is not database
specific.

• Supports the relationships to other x-Documents; 1-1, 1-n, n-n.

• Extensible at deployment time to include additional properties and relationships.

• Audit trail and Dynamic attributes can be ‘turned on’ at deployment time.

• Provides querying and persistent business document instances – XML based data
manipulation (DML) statements.

For details on the following, refer X-Documents in MDM Platform Reference Guide.pdf

• Surrogate Keys

• Document Index

• Document Properties

• Documents Links

• Foreign Key Constraints

• Overlay Documents

• Audit Trail

• Document Constraints
Master Data Manager Developer Guide 44

Chapter 3: Development of an MDM Application
Building an Application in MDM Studio
X-Rules
The primary purpose is to provide the xml Specification for expressing Business logic in
Workflows. X-Rules can consist of Variables, Expressions, Conditional Statements, Specific
Business Requests, and Predefined Requests.

X-Rules support Var, DocVAr, Value, Property, Attribute, Service, Global, other (such as
thisParam), and specific (such as username, REDIRECT_URL) variable types.

Conditional statements are supported and are defined as a statement that evaluates to a true or
false. The conditional statement can be simple or compound.

Specific Business Requests are defined as one or more X-Rules, each containing a set of
conditions and actions. The business request is analogous to a function in a programming
language. It is called by an external entity, may take parameter as input, perform an action,
and return an output. There are 8 business requests defined:

• DEFINE_METHOD – a generic request that contains one or more x-rules

• DEFINE_NOTIFICATION – used to perform a set of operations on multiple documents
that match specified criteria

• DEFINE_PRE_CREATE – invoked before a new instance of a document is added to the
database

• DEFINE_POST-CREATE - invoked after a new instance of a document is added to the
database

• DEFINE_PRE_MODIFY - invoked before a new instance of a document is executed on
the database

• DEFINE_POST_MODIFY - invoked when a new instance of a document is executed on
the database

• DEFINE_INIT – used by the system to perform initialization tasks when the X-Service is
deployed

• DEFINE_LISTENER – used to setup listeners for events

X-Operations
X-Operations are action statements that are used to write the business logic inside a
workflow. A workflow consists of ‘nodes’ that perform specified functions, such as; Start,
Task, Event, Branch, UI, Publish, etc. Within each node, X-Operations are used to execute
specific tasks. The Logic of a Business rule (or X-Rule) is written using X-Operations. X-
Operations are classified as follows:

• X-Document Operations

• SQL Operations

• XML Manipulations Operations

• Logic Operations

• User-Interface Operations

• Utility Operations

• Framework Services Operations
Master Data Manager Developer Guide 45

Chapter 3: Development of an MDM Application
Building an Application in MDM Studio
For more details, refer Services Reference section in MDM Platform Reference Guide.pdf.

X-Path
The primary purpose of X-Path is to provide a means to address parts of an xml document. X-
Path makes available a number of functions for manipulating strings, numbers, and Booleans.
X-Path is used as a concise way to express X-Rules. The primary syntactic paradigm in X-
Path is the ‘expression’. An ‘expression’ is evaluated to yield an object, which has one of the
following types:

• Node-set (an unordered collection of nodes without duplicates)

• Boolean (true or false)

• Number (a floating-point number)

• String (a sequence of characters)

Key Features of Studio
• Hierarchy Management

• Web Services Support

• Open Model Ingestion – OMI

• Data Authorization

• Data Quality Monitors

• MDM Test Services Framework

• Deployment Support

• Sample Application

Hierarchy Management
Hierarchy Management in Teradata MDM refers the definition, maintenance and viewing of
user defined Hierarchies. In Teradata MDM Hierarchies are considered Master Data. The
structure or relationships that define the structure are considered Master data as well as the
actual members or nodes of the hierarchy.

Part of business critical master data consists of data that is hierarchical in nature.This data
resides in a series of relational database tables that can be a part of the core master data.The
data in these tables is hierarchical in nature, meaning that the data consists of parent-child
relationships, generally represented through primary key – foreign key relationships in the
underlying data. A common requirement for customers in a master data management context
is the ability to manage and manipulate this hierarchical data, and central to this is the
necessity to be able to view this data in a visual hierarchy.

The Hierarchy Manager is responsible for allowing users to define multiple hierarchies that in
turn can be projected on the data, and used to visually present the data to users. Specifically, it
allows users to define multiple Hierarchies that can then be used to visualize, manage, and
manipulate their Hierarchy data that resides under the control of our MDM Framework.
Furthermore, the Hierarchy Manager captures and stores these definitions as metadata that
Master Data Manager Developer Guide 46

Chapter 3: Development of an MDM Application
Building an Application in MDM Studio
allows for generalized rules and processes to be applied to the Hierarchy or to elements of the
Hierarchy.

The Hierarchy Manager is integrated directly into the Master Data Manager Framework. It
allows users to define Dimensions, a Hierarchy, Hierarchy Objects, and Hierarchy
Relationships. Furthermore, it provides a direct linkage of the Hierarchy and its components
to the data that is managed as part of the MDM workflows and processes.

Web Services Support
Web Services can be created from within MDM Studio. WSDL (Web Services Description
Language) is an xml based language for describing web services and how to access them. It
specifies the location of the service and the operations (or methods) the service exposes.
MDM Studio provides the capability of exposing any X-Service API as a web service, by
simply defining its interface in the WSDL description for that X-Service.

In addition, secured Web Services can be configured and generated using MDM Studio
Plugins for Eclipse. Figure 31 and Figure 32 displays the MDM Web Services support for
Incoming and Outgoing services respectively. For detailed description on incoming and
outgoing services, refer to Chapter Web Services Implementation in MDM Platform Studio
User Guide.
Master Data Manager Developer Guide 47

Chapter 3: Development of an MDM Application
Building an Application in MDM Studio
Figure 31: Web Services Support—Incoming Web Service
Master Data Manager Developer Guide 48

Chapter 3: Development of an MDM Application
Building an Application in MDM Studio
Figure 32: Web Services Support—Outgoing Web Service

OMI
Open Model Ingestion (OMI) allows externally defined data models to be imported into
MDM Studio. The Data Model is the foundation of the MDM framework, upon which all
workflows, business processes, validation rules and data quality tests are based. Models
defined externally can be quickly imported into Studio, saving hours of time to manually
recreate the model in Studio. Models can be imported from the following external sources:

• Erwin 4.1

Data Authorization
MDM framework creates a master copy of all of the data and then subsequently manages the
access to this data using the data authorization feature. It incorporates the capability of having
Row Level Security (RLS) and Column Level Security (CLS) on tables. This integration
ensures that each user will have access to only data and data attributes to which they are
authorized. This feature offers a significant advantage as data under the control of the MDM
Framework is now secured.

Using MDM UI, you can assign roles for the columns and rows of different tables. Only users
with proper authorization can view the rows and columns of the authorization enabled tables.

Data Quality Monitors
The Data Quality Monitors provide information about the quality of the data that resides in
the Master tables. Data in these tables may contain ‘soft’ errors. ‘Soft’ errors are errors that
Master Data Manager Developer Guide 49

Chapter 3: Development of an MDM Application
Building an Application in MDM Studio
are not serious enough to prevent the data from updating the master record, but are still
noteworthy, and should be corrected in the future. The Data Quality charts provide the
following information:

• Chart showing the ratio of records containing ‘soft’ errors to ‘clean’ records (records
having no errors)

• An analysis that can be used to show the number of records in a master table that have
specific types of errors

• A breakdown of the number of rows having 0, 1, or more ‘soft’ errors

MDM Test Services Framework
The MDM test service provides the framework to execute test requests on services deployed
on a specified MDM server. The request and the associated response from the server can then
be used to verify the result of the test. The results of the test are then written out to a file.

The service exploits the capability of Teradata MDM’s workflow engine. Tests run as part of
the test service, are essentially workflows. A test workflow can be viewed as a series of
requests to the server, each request dependent on the previous one. Workflow acts as the glue
that ties these requests through variables and provides for the flow of actions. Hence, every
test workflow corresponds to testing a business workflow on the server through a series of
API calls.

Example: Customer order creation and completion test would involve:

1 Creation of customer order

2 Acknowledgement of the resultant activity orders

3 Shipment notification

4 Invoice notification

5 Delivery notification

The goals set for this service are:

1 Reduce the size of test workflows required to test a business functionality.

2 Provide a framework to verify the results of a test.

3 Provide a framework for reporting the results of tests.

4 Enable a high degree of reusability of test workflow code.

5 Provide a mechanism to instantiate test request data with as little manual intervention as
possible.

Provide a common test infrastructure to execute unit tests, regression tests and PSR tests

Deployment Support
The Teradata MDM Deployment Manager provides the ability to create a runtime deployment
package from the MDM Studio application project and move or deploy the code (including all
appropriate xml files) to the ‘target environment. The target environment may be a Quality
Master Data Manager Developer Guide 50

Chapter 3: Development of an MDM Application
Building an Application in MDM Studio
Test system, a Pre-Production system, a Production system, or whatever target the
implementation calls for.

MDM Deployment Manager addresses the deployment of the MDM application from MDM
Studio to other ‘servers’. It does not address the installation of MDM Studio, Server, or
Database. The Teradata MDM Installation Guides provide installation instructions for MDM
Studio and MDM Server. Within the reference guides the database definition via Schema
Generation is provided.

MDM Deployment Manager consists of two basic functions:

• A function within MDM Studio to package directories and files created in Studio for a
MDM application. This ‘package is converted into a CLOB and then inserted into the
MDM Deployment database and table(s).

• An InstallAnywhere executable that retrieves the MDM application ‘package’ from the
MDM Deployment database and ‘deploys’ it to an existing MDM installation on another
system. The InstallAnywhere provides a GUI for ease-of-use installation on Windows,
AIX, or Linux in Web Logic or WebSphere, appropriately.

Sample Application Support
The TD MDM solution provides the capability to manage any kind of System of Reference
(Master) data or System of Record data. Based on that, it has been used to solve a variety of
business problems related to information management. We have chosen Customer Data
Integration (CDI) as the Business Problem to be solved with a MDM Application. The
primary purpose of the Sample Application is to provide real-world examples of key features
and functions of the Teradata MDM product. The various features and functions are
exemplified in the context of a common business problem regarding Customer Information.

In this Sample Application (CDI) explains about the Customer consolidation, identification of
the duplicates and makes a new unique or update of existing records based on the selection.
The CDI Process is modeled here. It starts with a Dashboard view of all Customer related
information. From the dashboard, the user can deal with duplicate resolution (merging/
survivorship), drill into customer details, and get into a customer enrichment process. For
survivorship, the user can study the incoming record and compare it against the existing
MASTER record. The user can then interactively select one or more fields form one record
and one or more the other record to form the winning record that will become the MASTER
record. And for Search will show all active available customers and drill into customer details
for view or Enrich. New Customer is used for introducing New Customer and become active
this new created customer has go to some approval process and finally this new customer
active and available for further activities. For enriching the customer details is based on the
role/user group and concern eligible/ authorized person will modify/add the details to a
particular selected customer. In the MDM UI activities are visible to user based on the user
group/role.

Before the CDI process, It explains about the Sample Application Model design and related
MDM services, workflows and rules which are created using the Teradata Studio.
Master Data Manager Developer Guide 51

Chapter 3: Development of an MDM Application
Building an Application in MDM Studio
Figure 33: Sample Application Creation process

See “Section B—Sample Application” for more details.

List of Key Services
• Timer Service

• Publication Service

• Incremental Schema Generation

Timer Service
The MDM Timer Service provides the capability to perform specified actions at a specified
time. In addition, the duration at which the timer should repeat actions can be specified. The
Timer Service operates in two phases:

• Phase I provides for the setup of the timer in the system with a specified callback time.
This activity is handled by the MDM server and it also manages adding timer records to
the database.

• Phase II allows the Timer Sink to run as a service on the MDM server and manages the
specified callback actions on the services.

Publication Service
Publication Services is a new feature in MDM 2.0 that allows the Data Steward to control the
usage and flow of Master Data to end users or to consuming processes or applications.
Publication Services allows any data within the scope of MDM to be published in multiple
formats, to meet the needs and requirements of consuming application or processes.
Consuming applications or processes can retrieve data directly from the Publication database,
or they can have data pushed to them from a JMS Provider Queue table via JMS Messaging.
Additionally, data can be extracted from the database into file format, and emailed directly to
business users. Along the way, an audit trail of each publication request is preserved,
including (optionally) the actual data published with each request.

Publication Objects
A Publication Object is defined as any collection of information that can be published to a
downstream application, process, or end user. A Publication Object is comprised of a
Publication Key, and the Publication MetaData. In the context of publishing Master Data, the
Publication Meta Data specifies the composition of the data (tables and columns) that will be
published to the downstream consuming application, process, or user, and is represented by
one or more XDocuments, and their respective properties. XDocuments and Properties are
used by Teradata MDM processes to denote underlying Tables and Columns respectively. The
Publication Key is used to create a singular reference to this collection of data.
Master Data Manager Developer Guide 52

Chapter 3: Development of an MDM Application
Building an Application in MDM Studio
Publication Methods
The Publication method is used in a Publication Workflow Node the method (or format) that
the data will take when it is published in a workflow. Data can be published to the following
formats:

Internal Formats – data remains within Teradata

• Database Tables (based on the X-Documents being published) – the data will be published
into user-specified tables, ready for consumption by downstream applications and/or
processes.

• JMS Provider Queues – this is a specially formatted Teradata Queue table. The data is
converted into XML-based JSM Payloads, and can then be pushed to J2ee applications via
the Teradata JMS Provider.

External Formats – data is exported from Teradata

• Excel – data can be published into Excel 2003 compliant worksheets

• Comma Separated Value (CSV) text files – data can be published into one or more text
files

Publication Workflow Nodes
The Publication Node is a new MDM Workflow node that has been added in MDM 2.0 to
support Publication Services. Publication Workflow Nodes can be added to any workflow in
which data should be pushed to a consuming process or application, or directly to a business
user. The Publication Workflow Node is used to specify the data being published (via the
Publication Object), and the method (or format) the published data will take.
Master Data Manager Developer Guide 53

Chapter 4: Customer Service
World Class Support
CHAPTER 4 Customer Service

What’s In This Chapter

This chapter provides information about Teradata customer service.

Topics include:

• World Class Support

• Web Access

World Class Support

Teradata provides World Class Customer Support in which the contracted service level is
documented in the “Teradata Master Data Manager Support Plan”. This document can be
obtained from the Teradata Customer Service Consultant.

The Teradata Service Focus Team is a user group of Teradata customers which drive the
support processes and procedures in order to achieve the highest customer satisfaction. Every
year the Teradata Global Support Center achieves high scores in customer satisfaction which
is evaluated from numerous customer feedback mechanisms. Every year the Teradata Global
Support Center also rates very high in the “Service Capability & Performance (SCP) Support
Standard”.

Here is a list of the core features of MDM support. Additional service level options are
available.

• Remote Problem resolution assistance to correct Software Problems

• Local business coverage Monday through Friday 8AM to 5PM Pacific Time.

• 7x24 unlimited phone and Web access to report software problems and to search for
known problem resolutions

• Customer assigned call priority as predefined

• Timely resolution for reported problems

• Three Customer Authorized Service Requesters

• Support on the current distributed Major/Minor release and the prior Major or Minor
release

• Maintenance on the latest Maintenance Release of the current Major/Minor release.

The Support Plan also includes “Call Priority Definitions”, “Technical Escalation Guidelines”
and “Support Team Contacts” (including the management team).
Master Data Manager Developer Guide 54

Chapter 4: Customer Service
Web Access
Web Access

Web based access is available through the Teradata@YourService Website. Below are the key
benefits of Teradata@YourService:

• Search: Knowledge repositories to quickly get answers to questions or problems. Several
knowledge repositories are searched with one query, including the online documentation.
This search engine can also be used as a great training tool.

• Software & Patches Access: Download selected Teradata drivers, software and patches to
fix known problems

• Collaborate: 24 x 7 with thousands of Teradata users around the world for an answer, post
a question or answer other users’ questions in the Teradata discussion forum community

• Incident Management: Create, View and update incidents online. This allows the customer
to define the incident exactly as they want. Teradata@YourService provides the ability to
upload attachments, view updates and link to other documents referenced in the incident.

• Reporting: Reports are available on Teradata@YourService which reflect how the
“Service Level” and “Resolution Within Guidelines” are being met.

• ERs/RFCs – Requests for new MDM functionality can be opened through
Teradata@YourService and will be routed directly to Product Management.

Teradata@YourService can be accessed under www.teradata.com under “Support Services”.
Master Data Manager Developer Guide 55

Chapter 5: Training
Training Information

Master Data Manager Developer Guide 56

CHAPTER 5 Training

What’s In This Chapter

This chapter provides information about Teradata training.

Topics include:

• Training Information

Training Information

Teradata Training provides a full curriculum of MDM classes to meet the needs of all
audiences. The individual courses in Teradata Training’s MDM curriculum include:

• Teradata MDM Solution Overview (Teradata University Course # 38651)

• 2-Hour Web-Based Training

• This course covers the main concepts and business benefits of Master Data Manager.
It also reviews the key components of the Teradata MDM solution, the current MDM
marketplace, and the competitive landscape.

• Audience: Teradata Internal Only

• Teradata MDM Application Workshop (Teradata University Course # 39360)

• 3-Day Instructor Led Training

• This course provides detailed, hands-on training to accompany the base Teradata
MDM application. Its purpose is to make the students proficient with the concept,
purpose, and operation of the Teradata MDM solution.

• Audience: Teradata Solution Architects and Customer Data Stewards

• Teradata MDM Developers Workshop (Teradata University Course # 39361)

• 3-Day Instructor Led Training

• This course provides detailed, hands-on training to cover the Teradata MDM Studio
application development environment. Its purpose is to make the students proficient in
the development of MDM applications.

• Audience: MDM Application Developers (Teradata PS & Customers)

For additional information on Teradata MDM training you can access the Teradata University
Web site or contact your Teradata Sales Associate.

Please note that if third party partner software or other Teradata software is to be utilized
(such as Trillium, SAP, FirstLogic, D&B, or Teradata Warehouse Miner) training for those
products must be attained through each of those products training offerings.

Section B: —Sample Application

Master Data Manager Developer Guide 57

SECTION B —Sample Application

Section B provides link to the various chapters on Sample Application.

• Chapter 6: “Introduction.”

• Chapter 7: “Custom Application.”

• Chapter 8: “Custom Models.”

• Chapter 9: “Define Web Component.”

• Chapter 10: ”Sample Application Process”

• Chapter 11: ”MDM Features”

• Appendix B: “Configuration of Trillium Client.”

• Appendix C: “MDM Custom Web Services.”

Chapter 6: Introduction
Introduction
CHAPTER 6 Introduction

What’s In This Chapter

This chapter provides information about MDM and its key features and MDM sample
application.

Topics include:

• Introduction

• MDM Key Features

• Studio Sample Projects

• MDM—Sample Application (CDI) Solution

• MDM—Sample Application (CDI) Solution with Trillium Software

Introduction

The important principle of Master Data Manager is to manage the enterprise resource (data)
from an enterprise perspective. Teradata MDM is a class of enterprise applications designed
to support the management of data and metadata across heterogeneous enterprise
applications. Teradata MDM is built on a model driven, open standards, service-oriented
architecture and enables the enterprise to manage master data via a virtual data dictionary
using easy to use, visual, business process and data modeling tools. Business and data
workflows are defined and executed using a powerful Business Process Execution engine
(BPE) and data validation framework. These tools enable business users to create, update, and
document processes and workflows while simultaneously empowering IT departments to
rapidly extend existing data models to support the changing business needs.

Teradata MDM, at its core, consists of an enterprise data solution supporting the following
business and IT problems:

1 Data Management

a Define, create, update, and delete master data (soft delete, that is data would not be
visible to user but will be available in the system).

b Maintain enterprise metadata.

c Define business process and data validation rules.

d Provide mass update capability to systems.

e Track changes in data for audit purposes.

2 Data Synchronization
Master Data Manager Developer Guide 58

Chapter 6: Introduction
MDM Key Features
a Define workflows for data flow across systems.

b Store intermediate data from multiple systems.

c Validate data against business processes and rules.

d Provide clean data to all systems.

e Aggregate data for asset management.

3 Data Quality Measurement

a Create exception and informational alerts.

4 Design environment for maintaining business processes

a Visually create workflows, data models and business rules that define a business
process.

b Easily update and document the business processes.

5 Rapidly create/update UI screens and workflows for Infrastructure Services

a Enable role-based security for workflows and data for users and user groups.

b Integrate easily with EAI and ETL tools.

c Provide real time alerts for exception handling.

d Enable authentication by third-party systems such as Directory Services and so on.
MDM solutions are applicable in the following industries:

i Manufacturing and Hi-Tech

ii Consumer Goods and Retail

iii Telecommunications

iv Financial Services

v Insurance

vi Pharmaceuticals and Life Sciences

vii Healthcare

MDM Key Features

1 Table Editors

2 Manage Lookup Data

3 Hierarchy Management

4 Publishing

5 Data Load

6 User Management

7 Managing Master Data
Master Data Manager Developer Guide 59

Chapter 6: Introduction
Studio Sample Projects
8 Business Rule Builder

9 Data Quality

10 Manage Authorization

11 Manage Query

12 Manage Logger

13 Web Services

14 3rd party Application Integration - Excel

15 Alert

Studio Sample Projects

1 PGL Examples

2 Project Teachers

3 Workflow Monitor

4 Approvals

MDM is a Web based application and is accessible through the Web browser. Contact your
system administrator for the appropriate link to the MDM login page.

MDM Sample Application

The primary purpose of the sample application is to provide real-world examples of key
features and functions of the Teradata MDM product.

The Teradata MDM solution provides the capability to manage any kind of System of
Reference (Master) data or System of Record data. Based on that, it has been used to solve a
variety of business problems related to information management. For sample application
demo process, the Customer Data Integration (CDI) is selected as the business problem to be
solved using MDM Application.The various features and functions are exemplified in the
context of a common business problem relating to customer information.

Custom Application
You can create a custom application on top of an existing MDM installation. Your
custom application should be an MDM based application and should reference the
MDM Toolkit models, services, workflows and rules, as well as contain its own ser-
vice with a model, workflows and rules. Once your application has been setup, you
can include your custom application related workflows, business rules and valida-
tions. For details, see Chapter 7: “Custom Application”
Master Data Manager Developer Guide 60

Chapter 6: Introduction
MDM Sample Application
MDM—Sample Application (CDI) Solution
The CDI sample application provides solution for problems of customer consolidation,
identification of duplicates and the addition of new unique records or update of existing
records based on selection. For the overall CDI process flow, see “Sample Application CDI
Process Flow”.

MDM—Sample Application (CDI) Solution with Trillium Software
The primary purpose of the sample application with Trillium is to provide real-world
examples of key features and functions of the Teradata MDM product, as well as external
application usage support. In the sample application (CDI) with Trillium, Teradata
MDM solves the problems of customer consolidation, identification of duplicates,
and the addition of new unique records or update of existing records based on the
selection. For the overall CDI solution with Trillium software, see “Sample Application with
Trillium Process Flow”.
Master Data Manager Developer Guide 61

Chapter 7: Custom Application
Introduction
CHAPTER 7 Custom Application

What’s In This Chapter

This chapter provides details on creating custom application on top of existing MDM
Platform.

Topics include:

• Introduction

• Custom Application Creation

• Sample Application Setup

• Custom Application Folder Structure

Introduction

After installing MDM base, you have two options for setting up the sample application.

• Create custom application (Custom Application Creation).

• Use the existing custom application (sample application) provided in your base MDM
(Sample Application Setup).

Custom Application Creation

This section describes the creation of a custom application on top of an existing MDM
installation. Your custom application must be a MDM based application and it should
reference the MDM Toolkit models, services, workflows and rules, as well as contain its own
services with a models, workflows and rules. The custom application should be created in the
MDM default location with a folder structure as <MDM_Install_Directory>/custom/
<customApplication Name>. This folder contains only the files and sub folders required for
custom application and can later be used for schema generation, application, and other
processes.

Note: Currently, the MDM sample application supports only one level down (custom
application name) in the custom folder structure. For details on custom application’s folder
structure, see “Custom Application Folder Structure”

To create a custom application:
Master Data Manager Developer Guide 62

Chapter 7: Custom Application
Custom Application Creation
1 Create a custom application location

For detailed steps on creating new custom application location, refer to section Creating
Projects in Chapter 2 Getting Started of MDM Platform Studio User Guide.pdf.

Note: For successful creation of a new project in MDM Studio with MDM Installation on
WebSphere application server, the mdmclient war file should be extracted at
<MDM_Install_Directory>/web folder, as it refers to the files from this directory.

2 Create models

The Project Navigator pane on the Studio displays the custom application as in
Figure 34.

Figure 34: Custom Application—Studio Project Files

e On the Project Navigator pane (Figure 34), right-click on Model Set and select Insert
Model to create a custom model at the new custom location.

The Insert Model dialog box (Figure 35) is displayed.
Master Data Manager Developer Guide 63

Chapter 7: Custom Application
Custom Application Creation
Figure 35: Custom Application—Insert Model

f On the Insert Model dialog box (Figure 35), enter the following:

Root Path: < MDM_Install_Directory>/custom/
<CUSTOM_APPLICATION_NAME>/models

Name: The name of the custom application

Using: Select “Toolkit” if the model’s base is the MDM toolkit, otherwise leave blank.
It is recommended that you use “Toolkit” as the base model and click Ok.

The SampleApplication model set is created.

g Create the dictionary and models for the custom application at the above location.

You can create models using any of the following.

i Import from XDOC

ii Import from Erwin Model

iii Import from Relational database

iv Use Studio to create documents and dictionaries.

For details, see Chapter 8: “Custom Models”. The custom application models will be
displayed as in Figure 36.
Master Data Manager Developer Guide 64

Chapter 7: Custom Application
Custom Application Creation
Figure 36: Custom Application—Models and Dictionaries

3 Create a custom application service

Execute the following steps to create custom application service:

a On the Project Navigator pane (Figure 34), right-click on BCM_MASTER under
Services and select Customize Service.

The Setup Nature page (Figure 37) is displayed. By default, the MDM Based option is
selected.
Master Data Manager Developer Guide 65

Chapter 7: Custom Application
Custom Application Creation
Figure 37: Service Setup—Setup Nature

b On the Setup Nature page (Figure 37), select New Service option and click Next.

Toolkit.xml is the master service of the MDM base and its location must be
<MDM_Install_Directory>/custom/<CUSTOM-APPLICATION-NAME>/cfg/
properties.It is recommended to use a service file name that is the same as the custom
application name. For example, if the custom application name is
“sampleApplication” then the service file must be sampleApplication.xml.

The Setup Model Instance page (Figure 38) is displayed.
Master Data Manager Developer Guide 66

Chapter 7: Custom Application
Custom Application Creation
Figure 38: Service Setup-Setup Model Instance

c On the Setup Model Instance page (Figure 38), select the Base Model Set as
SampleApplication and in the Select Model Unit pane, select the Model Set checkbox
and click Next.

The Setup Options page will be displayed.

d On the Setup Options page, click Finish.

The Project Navigator pane displays the custom application service as in Figure 39.
Master Data Manager Developer Guide 67

Chapter 7: Custom Application
Custom Application Creation
Figure 39: Custom Application Service

e Add customer specific related workflows to the respective service file.

It is recommended that you add all workflows, rules and validations to the custom
application service. For details on adding workflows, rules and validations, refer
Chapter 4: Process Modelling in MDM Platform Studio User Guide.pdf.

Some manual changes are required for the custom service files. If the MDM base
model uses the MDM database topology mechanism (separate databases for the
services), then the custom application must be modified as in the below step g
(otherwise leave these fields blank):
Master Data Manager Developer Guide 68

Chapter 7: Custom Application
Custom Application Creation
f On the Project Navigator pane (Figure 39), double-click sampleApplication.xml. On
the right pane, scroll down till Schema Config and in the Database Name field, enter
the respective MDM staging database name.

g On the Project Navigator pane, expand the Staging folder under sampleApplication.xml
and repeat the step f for sampleApplication-input.xml, sampleApplication-output.xml,
sampleApplication-netchange.xml and sampleApplication-version.xml as in Figure 40.

Figure 40: Enter Database Name in Schema Config

4 Modify the required files for the custom application schema generation

Execute the following steps to modify the required files for schema generation of the
custom application.

a If the custom service has any stored procedures or constraints to create then perform
the following steps:

i Copy compile_MDM_SP.bat/.sh from <MDM_Install_Directory>/bin to custom
location bin folder.

ii Open the copied file and change the customMDMSPList.txt name as per your
requirement.

iii Create a file with the same name at <customApplication>/bin folder and add the
list of stored procedures you require to compile at SG/ISG.

You can compile the stored procedures in the following two ways:

• Perform step i in the custom location as per your requirement.

Open <MDM_Install_Directory>/custom/<CUSTOM_APPLICATION_NAME >/
bin/custom_gen_schema.bat/sh or incr_custom_gen_schema.bat/sh and add the
following line:

echo compiling Custom Stored Procedure and Views
Master Data Manager Developer Guide 69

Chapter 7: Custom Application
Custom Application Creation
%JAVA_HOME%\bin\java %JAVA_OPTIONS%
com.teradata.xcore.util.StoredProcCompiler xserver.xml
<CUSTOMMDMSPLIST.TXT >

• Stored procedures gets compiled during Incremental schema generation or schema
generation.

b If the custom service has any IDGEN creation then include those entries as given
below:

<idgen>
<document Name="SystemProperties" prefix="SYS" delimiter="-"
sequenceName="SYS_SEQ"
handler="com.teradata.xcore.idgen.BlockTableIdGenerator"
blockSize="100"/>
</idgen>

5 Create a Web UI component for the custom application

If the custom application has workflows and if the workflows are to be called from the
MDM Web UI left navigation pane (UINavigation.xml pad-item structure), then you need
to create a folder structure as in Figure 41 at <MDM_Install_Directory>/web/mdmclient/
WEB-INF.

Figure 41: Folder Structure
Master Data Manager Developer Guide 70

Chapter 7: Custom Application
Custom Application Creation
a On the Navigation folder created, include a file functions.cnd with the below coding:

<?xml version="1.0" encoding="UTF-8"?>
<x2:commands xmlns:x2="http://www.td.com/x2" xmlns:bcm="http://
www.td.com/bcm" xmlns:core="http://www.td.com/core"
xmlns:xcore="http://www.td.com/xcore" xmlns:xcore-db="http://
www.td.com/xcore-db" xmlns:xapl="http://www.td.com/xapl"
xmlns:web="http://www.td.com/web" xmlns:docutil="http://
www.td.com/docutil" xmlns:util="http://www.td.com/util"
xmlns:FUNCTION="http://www.td.com/FUNCTION" xmlns:REMOVE="http://
www.td.com/REMOVE" xmlns:xudl="http://www.td.com/xudl"
xmlns:cfg="http://www.td.com/configurability" xmlns:perm="http://
www.td.com/permissibility" xmlns:identity="http://www.td.com/
identity" xmlns:i18n="http://www.td.com/i18n" description="_">
<!--
**
** -->
<!--
**
** -->

<x2:command public="yes" description="_"
name="getPadItemExtension">
<x2:param name="selectedActivity" select="$this/ACTIVITY/@Value"/
>

<xapl:print>
********** CALLING CDI PAD ITEMS.... ************************
</xapl:print>
<xapl:return>

<x2:execute
command="core.navigation.functions:getCDIStudioExtensions">

<x2:with-param name="selectedActivity"
select="$selectedActivity"/>

</x2:execute>

</xapl:return>
</x2:command>

<x2:command public="yes" description="_"
name="getCDIStudioExtensions">

<x2:param name="selectedActivity" select="$this/ACTIVITY/
@Value"/>

<xapl:variable name="studioNavigation">
<xcore:execute-method name="//BCMMasterService/

getNavigation" entireResponse="false">
<user_id Value="{identity-user-id()}"/>
<user_name Value="{identity-username()}"/>

</xcore:execute-method>
</xapl:variable>
<xapl:return>

<xapl:if test="count($pad/PAD_ITEM) >0">
<xapl:value-of select="$pad"/>

</xapl:if>
<xapl:value-of select="$studioNavigation/*"/>

</xapl:return>
</x2:command>
</x2:commands>

Note: The model folder would be created by default in the custom application folder.
You can create the sub folders (core and navigation folders) as per your requirement,
but the function.cnd should be in the model folder as in Figure 41.

b Based on the custom application requirements, you will need to change the above file.
Master Data Manager Developer Guide 71

Chapter 7: Custom Application
Custom Application Creation
c Navigate to <MDM_Install_Directory>/web/mdmclient/WEB-INF/classes and open
the x2.properties file and add the line /WEB-INF/custom/<CUSTOM-
APPLICATION-NAME/model; into the model path used by MDM UI as in Figure 42.

Figure 42: x2.properties file

6 Execute the schema generation process

The schema generation process is performed by one of the two following ways: complete
schema generation or incremental schema generation.

Note: During the installation of MDM, if schema generation was not performed, then
choose the complete schema generation process else you can choose incremental schema
generation (ISG).

• If running schema generation using solution setup from MDM Studio, perform the
following:

• Click on Edit button for Static Data and delete correlation.xml entry.

• Add a new entry for custom correlation.xml as in Figure 43.
Master Data Manager Developer Guide 72

Chapter 7: Custom Application
Custom Application Creation
Figure 43: Solution Setup

• Update facet path

• Perform Solution Setup.

• Complete schema generation.

The complete schema generation process generates the entire toolkit model, as well as
the custom models. This method expects a clean MDM database (no MDM system or
model tables already exist in the database). If you want to create a complete and full
toolkit and custom model then run the schema generation file call_custom_gendb.bat
(or call_custom_gendb.sh on UNIX) located at <MDM_Install_Directory>/custom/
<CUSTOM-APPLICATION-NAME>/bin.

• Incremental schema generation

The incremental schema generation process generates SQL scripts based on the
schema differences between an existing schema in a database and schema documents
in one or more MDM Services. The inputs to this script are essentially the Server
configuration file (that contains the database information whose schema forms the
baseline for comparison) and the service configuration file(s) (that have references to
the MDM XDocuments that will be compared with the baseline). If you only want to
create the newly added model elements or modify existing elements, then run the
schema generation file call_custom_incr_gendb.bat (or call_custom_incr_gendb.sh
Master Data Manager Developer Guide 73

Chapter 7: Custom Application
Sample Application Setup
on UNIX) location at <MDM_Install_Directory>/custom/<CUSTOM-
APPLICATION-NAME>/bin. This will perform the incremental model creation for
toolkit and the custom model.

The custom schema generation’s log file custom_gendb.log is located at
<MDM_Install_Directory>/custom/<CUSTOM-APPLICATION-NAME>/log.

Note: If you wish to deploy the application in a collapsed tier environment, refer
Appendix Collapsed Tier Setup in MDM Platform Studio User Guide.pdf.

7 Load pre-defined data

If the custom application requires any pre-defined data or static data, you can create and
load data to database at this point.

8 Bring up MDM UI

In order to bring up the MDM UI with the custom application, the application must be
have been deployed into the database via schema generation (step 5). Use the batch files
(located at <MDM_Install_Directory>/custom/sampleApplication/bin) created during the
process of creating custom application location (step1).

To start the MDM server, run “startAll.bat”. This will start up the MDM locator and
MDM server. Once both are up and running, start your Web server pointing it to the MDM
default installation.

Sample Application Setup

Note: Read the README document available at <MDM_Install_Directory> before
proceeding with the below steps.

Sample Application setup involves the following steps:

• Installation

• Load pre-defined data

• Configuring Sample Application Project in Eclipse

• Enable Web Service

After performing the above steps, launch sample application MDM UI and perform the
“Load Data Process”.

Installation
Pre requisite: install MDM before installing sample application.

Perform the following steps for MDM sample application setup:

1 Run DeploymentMgr.exe from <MDM_Install_Directory>\bin

The MDM Deployment Manager—Introduction window (Figure 44) is displayed.
Master Data Manager Developer Guide 74

Chapter 7: Custom Application
Sample Application Setup
Figure 44: Introduction

2 On the Introduction window (Figure 44), read the information and click Next.

The Choose MDM Installation Folder window (Figure 45) is displayed.
Master Data Manager Developer Guide 75

Chapter 7: Custom Application
Sample Application Setup
Figure 45: Choose MDM Installation Folder

3 On the Choose MDM Server Installation Folder window (Figure 45), select the location of
the MDM installation and click Next.

The Deploy Custom Application/Change Password window (Figure 46) is displayed.
Master Data Manager Developer Guide 76

Chapter 7: Custom Application
Sample Application Setup
Figure 46: Deploy Custom Application/Change Password

4 On the Deploy Custom Application/Change Password window (Figure 46), select the
option Deploy Custom Application.

For the Source of Deployment option, by default Database option is selected. If Database
option is selected, provide the database details from where the deployment manager can
fetch the stored custom project details. If File option is selected, specify the custom jar file
location to be used for deployment.

Note: Select the deployment option as specified in Studio while creating the custom
application.

5 On the Deploy Custom Application/Change Password window (Figure 46), with Database
option selected as in Figure 46, click Next.

The Database Setting window (Figure 47) is displayed.
Master Data Manager Developer Guide 77

Chapter 7: Custom Application
Sample Application Setup
Figure 47: Database Settings

6 On the Database Setting window, enter the required details for the deployment database
and click Next.

• Teradata Data System Name -> refers to the Teradata Database system hostname
(mdmSystem/mdm etc.) where your custom projects exists (using MDM Studio).

• Database Name -> refers to the database (within MDM User) where your custom
project exists (using MDM Studio). Deployment Manager refers to this database to
fetch the list of archived/stored MDM custom Projects.

• Database User and Password -> refers to the database user and password where your
MDM custom projects are saved.

Note: You can have your custom projects under different Databases (can be staging
database as well). Deployment Manager refers to this database to fetch archived/stored
(using MDM Studio) MDM custom Projects.

Note: If the entered details on the Database Setting window are not correct, the
connection fails and the Incorrect DB Information window is displayed as in Figure 48. Re-
enter the details and try again to establish the connection.
Master Data Manager Developer Guide 78

Chapter 7: Custom Application
Sample Application Setup
Figure 48: Incorrect DB Information

The Enter Project ID & Your Name window (Figure 50) is displayed.

On the Deploy Custom Application/Change Password window, if the Source of Deployment
option is selected as File System, the Choose Custom Application Jar to Deploy window
(Figure 49) is displayed..

Figure 49: Choose Custom Application jar to Deploy

7 On the Choose Custom Application Jar to Deploy window (Figure 49), specify the custom /
sample application jar location and click Next.

Note: If any changes are done in .jar file, the file will be corrupted and cannot be re-used.
Master Data Manager Developer Guide 79

Chapter 7: Custom Application
Sample Application Setup
The Enter Project ID & Your Name window (Figure 50) is displayed. Displays the list of all
the versions of all the projects that have been deployed in the Deployment database.

Figure 50: Enter Project ID & Your Name

8 On the Enter Project ID & Your Name window (Figure 50), enter your name and enter the
ID of the project that needs to be deployed onto the target system and click Next.

The name is required for auditing purpose as this information will be logged under
DEPLOY_LOG table to audit who deployed which application etc.

The Database Preparation window (Figure 51) is displayed.
Master Data Manager Developer Guide 80

Chapter 7: Custom Application
Sample Application Setup
Figure 51: Database Preparation

9 On the Database Preparation window (Figure 51), select the required option and click
Next.

If Yes option is selected, schema generation changes will be done and if No option is
selected, the schema generation changes will not be updated.

If Collapsed mode was selected during base MDM installation, by default collapsed mode
is selected and the message is displayed as in Figure 52.

The Please Choose Mode of Deployment window (Figure 53) is displayed if Co-located
mode was selected during base MDM installation.

Note:

• For re-deployment, use the same existing deployment mode. If the custom application
is deployed in co-located mode, it can still be re-deployed in collapsed mode. But if
the custom application is deployed in collapsed mode, it cannot be redeployed in co-
located mode.

• For collapsed mode, the following jars have to be explicitly added to the application
server (Websphere/Weblogic/Tomcat) classpath in the same order.

1. <MDM_Install_Diectory>/web/mdmclient/WEB-INF/lib/customcoloc.jar (in case
of custom/sample application, this has to be added first).

2. <MDM_Install_Diectory>/web/mdmclient/WEB-INF/lib/coloc.jar
Master Data Manager Developer Guide 81

Chapter 7: Custom Application
Sample Application Setup
Figure 52: Default Mode of Deployment
Master Data Manager Developer Guide 82

Chapter 7: Custom Application
Sample Application Setup
Figure 53: Please Choose Mode of Deployment

10 On the Please Choose Mode of Deployment window (Figure 53), select the appropriate
deployment mode and click Next.

The Install Complete pop-up (Figure 54) is displayed.
Master Data Manager Developer Guide 83

Chapter 7: Custom Application
Sample Application Setup
Figure 54: Install Complete

11 On the Install Complete pop-up, click Done.

Load Pre-defined Data
To load pre-defined data, navigate to
<MDM_Install_Directory>\custom\sampleApplication\testdata and run
Call_populate_sampleApplicationData.bat/sh

On successful completion of the script, the predefined data are loaded into database.

Configuring Sample Application Project in Eclipse
Perform the following steps in MDM studio:

1 Launch Eclipse MDM studio. For detailed steps, refer to section Opening an Custom
Application Project of chapter 2 Getting Started in MDM Platform Studio User Guide.pdf

Enable Web Services (Optional Step)
For detailed steps on how to enable web services, refer to Chapter Web Services
Implementation in in MDM Platform Studio User Guide.pdf

Perform the following steps to enable custom web service:
Master Data Manager Developer Guide 84

Chapter 7: Custom Application
Sample Application Setup
1 Copy the BCM_MASTER.aar file from the location
<MDM_Install_Directory>\custom\sampleApplication\testdata\WSDL\customWebServic
es to the location<MDM_Install_directory>\web\mdmclient\WEB-INF\services

2 Launch MDM Studio. For detailed steps, refer to chapter 2 Getting Started in MDM
Platform Studio User Guide.pdf.

3 On the MDM Studio, in the Project Navigator pane, right-click Web Services and select
Insert New Group.

The New Group dialog box (Figure 55) is displayed.

Figure 55: New Group

4 On the New Group dialog box (Figure 55), in the Value field, enter the group name and
click Ok.

The group is added to the Web services node in the Project Navigator pane.

5 Right-click on the newly added group folder and select Insert WSDL.

The WSDL Input dialog box (Figure 56) is displayed.

Figure 56: WSDL Input

6 On the WSDL Input dialog box (Figure 56), from the Loading Mechanism drop-down list,
select the loading mechanism as File Based and click OK.

The WSDL Input dialog box (Figure 57) is displayed.
Master Data Manager Developer Guide 85

Chapter 7: Custom Application
Sample Application Setup
Figure 57: WSDL Input Dialog Box

7 On the WSDL Input dialog box (Figure 57), select the WSDL file to import and click Open.

The WSDL file gets added to the group in the Project Navigator pane.

8 Right click imported WSDL and Select Activate. (MDM need to be restarted if it is
already running).

Sample Web Service

To enable Yahoo Web service:

1 Perform step 1 to 5 as in section “Enable Web Services (Optional Step)”.

2 On the WSDL Input dialog box (Figure 56), from the Loading Mechanism drop-down list,
select the loading mechanism as HTTP Based and click OK.

The WSDL Input dialog box (Figure 58) is displayed.

Figure 58: WSDL Input
Master Data Manager Developer Guide 86

Chapter 7: Custom Application
Custom Application Folder Structure
3 On the WSDL Input dialog box (Figure 58), in the URL field, enter the URL of the file to
import and click OK.

Inset URL from

<MDM_BASE>\custom\sampleApplication\testdata\WSDL\YahooWorkflowWSDLURL
.txt FILE.

4 Repeat the steps for remaining two URL’s available in the above text file.

5 Right click imported WSDL and Select Activate (MDM need to be restarted if it is
already running).

6 Register with xignite service using the URL https://xignite.com/MyAccount/Register.aspx

7 Open yahooWorkflow.xml in MDM Studio and click open Get Stock Quote1 WSDL node
and add username and password registered in WSDL Transform Header Section.

Custom Application Folder Structure

MDM server side folder structures for custom application is <MDM_Installed _Directory>/
Custom/<Custom Application Name>. The below table describes the folders available in
custom application folder.

Folder Name Required for Description

batch It is required if the custom
application’s register load and prepare
loads are defined during schema
generation process/testdata.

This folder and its subfolders are required
to have custom E2E process like register
load and prepare load process.

bin It is required for custom application
schema process and to start the
services.

This folder has all the files required for
custom application schema generation
and to start the MDM services.

cfg It is required for custom application
schema process and to start the
services.

This folder and its subfolders holds all
custom application’s properties files and
service related files like workflows, rules,
model instances and so on.

log It is required for custom application
schema process and to start the
services.

This folder and its subfolders holds all
custom application’s service and base
MDM’s service log files.

models It is required for custom application
schema process and to start the
services.

This folder and its subfolders have all
custom application’s models.

db This folder gets created during
schema generation process.

This folder has a SQL sentence structure
of custom application.
Master Data Manager Developer Guide 87

Chapter 7: Custom Application
Custom Application Folder Structure
Web server side folder structures for custom application is

Web\mdmclient\WEB-INF\custom\<Custom Application>\model\function.cnd

Or

Custom\<Custom Application>\model\core\navigation\ function.cnd

The below table describes the folder available at: Web\mdmclient\WEB-INF\custom\<Custom
Application>

The below table describes the file available at: Web\mdmclient\WEB-INF\class

testdata It is created during the schema
generation process. It is required only
if any stored procedure’s or other
custom schema process related files
are located under this folders.

This folder have all custom application’s
predefined data or stored procedures.

Folder Name Required for Description

model It is used by Web application server
for left navigation.

Custom application’s navigation can be
defined.

Folder Name Required for Description

X2.properties It is used by Web application server
for left navigation.

Defines custom application’s model path.

Folder Name Required for Description
Master Data Manager Developer Guide 88

Chapter 8: Custom Models
Creating a Model using Studio
CHAPTER 8 Custom Models

What’s In This Chapter

This chapter provides information about the powerful data modeling environment provided
by MDM Studio. You can use the data modeling environment for defining the data models
within an enterprise. MDM Studio provides a design environment for operating on metadata
of the business models and it allows managing all aspects of the model.

Topics include:

• Creating a Model using Studio

• Importing a Model into MDM Studio

Creating a Model using Studio

Navigate to <MDM_Install_Directory>/custom/sampleApplication/bin and open the
sampleApplication.owb file in Studio. For details on creating model using studio, refer to
section Create Models in Chapter 3 Data Modelling of MDM Platform Studio User Guide.pdf

For the CDI sample application, the following Dictionary and Model files are created:

• Dictionary

• SOURCE

• srcdictionary.mdt

• Model

• SOURCE

i CUSTOMER.mtt

ii LEGACY_CUSTOMER.mtt

iii PARTY_XREF_CUST.mtt

Note: From MDM 3.01.01 release, Legacy_Customer is changed to Customer_Source.

For detailed information, refer to MDM Platform Studio User Guide.

Importing a Model into MDM Studio

You can use any of the following to import a model into MDM studio:

• Import from Relational Database
Master Data Manager Developer Guide 89

Chapter 8: Custom Models
Importing a Model into MDM Studio
• Import from Erwin

• Import from XDocs

Import from Relational Database
1 On the MDM Studio window, in the Navigator pane, right-click on the custom model

(Custom Application Model), point to Import and then select Relational Database as in
Figure 59.

Figure 59: Import from Relational Database

2 Follow the remaining steps as explained in section Importing from Relational Database in
chapter 3 Data Modeling of the MDM Platform Studio User Guide along with the
following steps.

3 On the Categorize Field Types page, in the Categorize Field Types pane, select the
dictionary folder from Sample App Model and create a folder called CRM.

4 In the CRM folder, create a crmdictionary file and move all the field types from the Field
Type pane to the crmdictionary file and click Next. The Categorize Tables page is
displayed.

5 On the Categorize Tables page
Master Data Manager Developer Guide 90

Chapter 8: Custom Models
Importing a Model into MDM Studio
• In the Categorized Tables pane, select the models folder from Sample App Model and
create a folder called CRM.

• From the Tables pane, select the following tables (ACCOUNT_MASTER,
HOUSEHOLD_ACTIVITY_SUMMARY, and INDIVIDUAL_MASTER) and move
it to the CRM folder.

• Click Next. The Reconcile Model Set page is displayed.

6 On the Reconcile Model Set page,

• From the Action drop-down list, select the option Add All to Target and click Go.

• Click OK to finish the database import process.

Import from ERwin
1 On the MDM Studio window, in the Navigator pane, right-click on the custom model

(Custom Application), point to Import and then select Erwin 4.1 or Erwin 7.2 as in
Figure 60.

Figure 60: Import from ERwin

2 Follow the remaining steps as explained in section Importing from Erwin in chapter 3
Data Modeling of the MDM Platform Studio User Guide along with the following steps.

3 On the Select ERwin File page, in the ERwin Source File field, select the Address file.
Master Data Manager Developer Guide 91

Chapter 8: Custom Models
Importing a Model into MDM Studio
Note: The following sample ERwin files are available: Address, Party, Payment Account,
and Vendor. But for the CDI Sample Application, only the Address file is selected.

4 On the Categorize Field Types page, in the Categorize Field Types pane, select the
dictionary folder from Sample App Model and create a folder called RLDM.

5 In the RLDM folder, create an rldmdictionary file and move all the field types from the
Field Type pane to the rldmdictionary file and click Next. The Categorize Tables page is
displayed.

6 On the Categorize Tables page,

• In the Categorized Tables pane, select the models folder from Sample App Model and
create a folder called RLDM.

• In the RLDM folder, create a folder called ADDRESS.

• From the Tables pane, select the tables and move it to the ADDRESS folder.

• Click Next. The Reconcile Model Set page is displayed.

7 On the Reconcile Model Set page,

• From the Action drop-down list, select the option Add All to Target and click Go.

• Click OK to finish the database import process.
Master Data Manager Developer Guide 92

Chapter 8: Custom Models
Importing a Model into MDM Studio
Import from XDocs
1 On the MDM Studio window, in the Navigator pane, right-click on the custom model

(Sample App Model), point to Import and then select Xdocs as in Figure 61.

Figure 61: Import from XDocs

2 Follow the remaining steps as explained in section Importing from Xdocs in chapter3
Data Modeling of the MDM Platform Studio User Guide along with the following steps.

3 On the Categorize Field Types page, move all the field types from the Field Type pane to
the existing srcdictionary file and click Next.

4 On the Categorize Tables page, from the Tables pane, select the tables and move it to the
existing SOURCE model folder and click Next. The Reconcile Model Set page is
displayed.

5 On the Reconcile Model Set page,

• From the Action drop-down list, select the option Apply Reconcile Indent and click
Go.

• Click OK to finish the database import process.
Master Data Manager Developer Guide 93

Chapter 9: Define Web Component
Define UI Navigation Structure
CHAPTER 9 Define Web Component

What’s In This Chapter

This chapter provides information about the web component definition. MDM Studio
provides a design environment for defining the navigation model structure, as well as
managing all aspects of the model within the defined service.

Topics include:

• Define UI Navigation Structure

• Include into Web Component

Define UI Navigation Structure

Navigation structure is defined in a workflow activity specifying how you want to expose
your workflows in the MDM UI. For that you have to define the structure in the
UINavigation.xml which is part of the service rule folder. While creating the new service, add
from an existing service which has the UINavigationRule.xml rule file and then modify the
structure according to your requirements.
Master Data Manager Developer Guide 94

Chapter 9: Define Web Component
Define UI Navigation Structure
Figure 62: Define UI Navigation Structure

In this rule, define a method that is called by the web component while the web service is
running. Here you can define how you want to call the workflow activities. For example in
this demo we have defined the activity as follows:

• Customer Data -> Level 1

• Customer Management – Sub level 2

Define the workflow

<TO_DOCVAR AssignToVar="CMTempXml">
<PAD_ITEM DisplayText="Customer Management">
<PAD_ITEM OnClick="/mdm/
start.x2ps?START_WORKFLOW=ApprovalInbox&SERVICE_NAME=BCM_MASTE
R" DisplayText="Inbox"/>
<PAD_ITEM OnClick="/mdm/
start.x2ps?START_WORKFLOW=SearchCustomer&SERVICE_NAME=BCM_MAST
ER" DisplayText="Search Customers"/>
<PAD_ITEM OnClick="/mdm/
start.x2ps?START_WORKFLOW=NewCustomerIntroduction&SERVICE_NAME
=BCM_MASTER" DisplayText="New Customer Introduction"/>
<PAD_ITEM OnClick="/mdm/
start.x2ps?START_WORKFLOW=CustomerDashboard&SERVICE_NAME=BCM_M
ASTER" DisplayText="Customer Dashboard"/>
</PAD_ITEM>
</TO_DOCVAR>
Master Data Manager Developer Guide 95

Chapter 9: Define Web Component
Include into Web Component
• Other Utilities – Sub level 2

<TO_DOCVAR AssignToVar="CPTempUtilXml">
<PAD_ITEM DisplayText="Other Utilities">
<PAD_ITEM OnClick="/mdm/
start.x2ps?START_WORKFLOW=alert_utilWF&SERVICE_NAME=BCM_MASTER
" DisplayText="Send an Alert"/>
<PAD_ITEM OnClick="/mdm/
start.x2ps?START_WORKFLOW=DataValidationError&SERVICE_NAME=BCM
_MASTER" DisplayText="Batch Data Validation"/>
<PAD_ITEM OnClick="/mdm/
start.x2ps?START_WORKFLOW=load_data&SERVICE_NAME=BCM_MASTER"
DisplayText="Load Data "/>
<PAD_ITEM OnClick="/mdm/
start.x2ps?START_WORKFLOW=reset_data&SERVICE_NAME=BCM_MASTER"
DisplayText="Reset CDI Data"/>
<PAD_ITEM OnClick="/mdm/
start.x2ps?START_WORKFLOW=dirty_read&SERVICE_NAME=BCM_MASTER"
DisplayText="Dirty Read"/>
<PAD_ITEM OnClick="/mdm/
start.x2ps?START_WORKFLOW=customerPublication&SERVICE_NAME=BCM
_MASTER" DisplayText="Publishing Objects"/>
</PAD_ITEM>
</TO_DOCVAR>

• Level 1 Definition

<TO_DOCVAR AssignToVar="navigationXml">
<PAD Name="Studio" DisplayText="Customer Mgmt" Scrollable="yes">
<PAD_ITEM DisplayText="Customer Data">
<TO_XML SelectList="$CMTempXml"/>
<TO_XML SelectList="$CPTempUtilXml"/>
</PAD_ITEM>
</PAD>
</TO_DOCVAR>
<ADD_CHILDREN DocVar="thisReturn" FromSelect="$navigationXml"/>

This allows you to design your web workflow activity navigation.

Include into Web Component

After defining the workflow activity, include the structure file into the Web component
located at <MDM_Install_Directory>/web/mdmclient/WEB-INF. It is recommended not to
use the existing files and create an additional folder structure like below with a “cnd” file.

Custom/SampleApplication/model/core/navigation/function.cnd. For the sample cnd file, see
step 4 in section “Custom Application Creation” of Chapter 7: “Custom Application”.

Once this is defined, add the custom model location into the model properties files.

Navigate to <MDM_Install_Directory>/web/mdmclient/WEB-INF/classes and open the
x2.properties file and add the line /WEB-INF/custom/<CUSTOM-APPLICATION-NAME>/
model; into the model path used by MDM UI as below.

model-attribute.modelpath=/WEB-INF/custom/sampleApplication/model;/WEB-INF/bcm/
model;/WEB-INF/core/model;/WEB-INF/system;/WEB-INF/upload_kit/model

For more details, see step 4 in section “Custom Application Creation” of Chapter 7: “Custom
Application”.
Master Data Manager Developer Guide 96

Chapter 9: Define Web Component
Include into Web Component
Master Data Manager Developer Guide 97

Chapter 10: Sample Application Process
Introduction
CHAPTER 10 Sample Application Process

What’s In This Chapter

This chapter provides information about the sample application process.

Topics include:

• Introduction

• Sample Application Data Model

• Sample Application CDI Process Flow

• Sample Application with Trillium Process Flow

Introduction

The unstructured and unclean bulk data fed into the MDM Inbound staging area via an ETL
tool or as a flat file. This bulk data is taken as input to compute the net change in data from
the previous load. The net change data is then persisted into the MDM master tables.

Data is moved into the Legacy system of reference and then the Teradata MDM application is
used to enrich the data, cleanse the data and match customer records. Based on the Teradata
MDM application’s matcher response, customer records are split into customer master
records, cross reference and potential records. Using the data steward algorithm approach, all
impending records are moved to a new customer or updated within an existing customer.
Finally, the customer data is ready to publish to the outside world.

Sample Application Data Model

The data model utilized within this demonstration (loaded into MDM during installation) is
based upon Teradata’s logical data models. Within the Teradata data models, the primary
subject area known as ‘Party’ supports the CDI sample application. ‘Party’ is a ‘Subject Area’
that is common across all the industry logical data models. For this version of the CDI sample
application, the CDI data requirements do require additional data that is directly related to
‘Party’, but is more industry specific, such as Address, Payment Account, and Vendor
(Supplier), from Retail LDM (due to familiarity only) as well as a few from the CRM model.

• CRM Model—It can be tailored more specifically to the particular needs of an
organization and holds the customer’s related data.

• PARTY—it has the flexibility in grouping entities and holds the customer’s related data.

• ADDRESS—it holds the customer’s address related data model and data.
Master Data Manager Developer Guide 98

Chapter 10: Sample Application Process
Sample Application CDI Process Flow
In addition to this model, three more customer related tables (Legacy Customer, Customer
and Party Customer Cross reference) similar to customer’s consolidated model are required.

• Legacy Customer—holds the source system data or incoming data.

Note: From MDM 3.01.01 release, Legacy_Customer is changed to Customer_Source.

• Customer—holds the unique customer data.

• Party Customer Cross Reference—holds the customer related data.

For the demo purpose, other tables that exist in the database are not used.

Figure 63 displays the RLDM model and customer model relationship.

Figure 63: RLDM Model and Customer Model relationship

Sample Application CDI Process Flow

The CDI process starts with a Dashboard view of all Customer related information. From the
dashboard, you can deal with duplicate resolution (merging/ survivorship), drill into customer
details, and get into a customer enrichment process. For survivorship, the user can study the
incoming record and compare it against the existing MASTER record. You can then
interactively select one or more fields form one record and one or more from another record
to form the winning record that will become the MASTER record. In addition, Search option
will show all active available customers and drill into customer details for viewing or
enrichment. You can also introduce new customer. To make the new customer active, this
newly created customer must go through an approval process before it is available for further
activities. The ability to enrich customer details is based on the role/user group of the user. In
addition, the MDM UI activities are visible to a user based on the user group/role.
Master Data Manager Developer Guide 99

Chapter 10: Sample Application Process
Sample Application CDI Process Flow
CDI Process Flow
CDI is the process of consolidating and managing customer information from all available
sources, including contact details, customer valuation data and information gathered through
interactions such as direct marketing. Properly conducted, CDI ensures that all relevant
departments in the company have constant access to the most current and complete view of
customer information available. As such, CDI is an essential element of customer relationship
management.

Figure 64 displays the sample application CDI process flow.

Figure 64: Sample Application process flow

Figure 65: Overall CDI Process Flow

Figure 65 displays the overall CDI process flow using Teradata MDM. MDM handles data
acquisition from the external source system or 3rd party legacy system, business validation,
basic data type validation, other validations, data cleansing, data enrichment, matching and
duplicate recognition, and publishing. Teradata MDM also handles processes like identifying
the cross reference customer, interactive data steward UI process, customer management
process and data reconstruction and syndication.

Data Acquisition
Data acquisition is a process of extracting, transforming, and transporting data from the
source systems and external data sources to the data warehouse database objects. The data
acquisition process can be achieved via ETL (Extraction Transformation and Load) or EII
(Enterprise Information Integration) technologies.
Master Data Manager Developer Guide 100

Chapter 10: Sample Application Process
Sample Application CDI Process Flow
For the CDI sample application, a workflow called “Load Data” loads the sample demo data
into the Teradata MDM inbound staging area. The LEGACY_CUSTOMER
(IN_LEGACY_CUSTOMER) table gets involved during the data acquisition process.

Figure 66: Load Data

Data Validation and Enrichment
Using Business rule builder, you can define business rules for data validation, rule based data
update/insert, rule based filtering of records etc. You can define SQL validation, update,
insert and filter rules. The following section explains the different types SQL rules.

Rule Type: SQL_Filter
The sql filter rule will filter the records satisfying the defined filter rules in the inbound
staging itself during E2E. Before netchange is computed, all such records are removed from
the input tables that participate in the specific E2E load.

For example, in CDI demo, it filers records which belong to COUNTRY as "India" from
source table (LEGACY_CUSTOMER) as displayed in Figure 67.

Figure 67: Rule Type: SQL_Filter
Master Data Manager Developer Guide 101

Chapter 10: Sample Application Process
Sample Application CDI Process Flow
Rule Type: SQL_Validation
You can define validation rules of three different severities - WARNING, ERROR and
SEVER ERROR. In CDI demo, the WARNING and ERROR types are demonstrated.

During Do_Db_Persist, the validation rules are executed one by one and for each error it
appends the error code to the SYS_ERR_CODE column of the records that fail the validation.

Figure 68: Rule Type: SQL_Validation

SQL_Validation Rule with Severity WARNING
Validation rules with severity WARNING are classified as SOFT ERROR rules. When a
record fails such a validation, it is considered as erroneous but not a severe error and will not
be restricted to move to master. When a record fails a validation of severity WARNING, the
SYS_ERR_SVRTY for such record is marked as WARNING and at the end of the validation
process these records are copied to the corresponding Master and Error tables unless the same
record fails another validation of higher severity (ERROR or SEVERE ERROR).

In CDI demo, in the LEGACY_CUSTOMER table, the records that have
FAMILY_MEMBER values as more than 3 are marked as records having SOFT ERRORS
(severity WARNING).

Figure 69: Rule Type: SQL_Validation with Severity WARNING

SQL_Validation Rule with Severity ERROR
Validation rules with severity ERROR or SEVERE ERROR are classified as HARD ERROR
rules. A record that fails such a validation is erroneous and must be restricted from moving to
master. When a record fails a validation of severity ERROR or SEVERE ERROR, the
Master Data Manager Developer Guide 102

Chapter 10: Sample Application Process
Sample Application CDI Process Flow
SYS_ERR_SVRTY for such record is updated with appropriate error and at the end of the
validation process these records are moved to the corresponding error table.

In CDI demo, in the LEGACY_CUSTOMER table, records that have FAMILY_MEMBER
values as more than 3 must be marked as ERRORS.

Figure 70: Rule Type: SQL_Validation with Severity Error

Note: While creating the business rules of type validation, all rules with severity WARNING
must be kept above the rules of the other two severities. This is later used by the Data Quality
Soft error reports.

Rule Type: SQL_INSERT
Insert rule allows data enrichment on the input data. It can be defined using Business Rule
Builder capability available on MDM Web UI. It can only perform INSERT operation on the
same table/other table using the input record values as per defined criteria. Scenarios like
inserting child records in the dependent entities can easily be accomplished through this type
of business rule.

During DO_DB_Persist processing, these rules get executed by default after input record is
persisted successfully into master table. The insert rules are action based, i.e., at the time of
definition one can declare action type (DO_DB_Persist API action) upon which given insert
rule should get executed.

Note: Sql_Insert rules do not execute if a custom xrule, defined through data persist config
spec, is executed as part of DO_DB_Persist action API. For more details, refer to Chapter
Business Rules in MDM Platform Server Guide.

In CDI demo, whenever record is inserted into the LEGACY_CUSTOMER table of Master
area, the same record in the same table has to updated with CUST_STATE='INCOMING' for
identifying the new incoming records.
Master Data Manager Developer Guide 103

Chapter 10: Sample Application Process
Sample Application CDI Process Flow
Figure 71: Rule Type: SQL_Insert

Rule Type: SQL_UPDATE
Similar to Insert rule, update rule also allows data enrichment on the the input data. It can be
defined using Business Rule Builder capability available on MDM Web UI. However, unlike
insert rule, Update rule can only perform UPDATE operation on the same table/other table
using the input record values as per defined criteria. During DoDbPersist processing, these
rules get executed by default after input record is persisted successfully into master table.

The update rules are action based, i.e., at the time of definition one can declare action type
(DO_DB_Persist API action) upon which given update rule should get executed.

Note: Sql_Update rules do not execute if a custom xrule, defined through data persist config
spec, is executed as part of DDP action API. For more details, refer to Chapter Business Rules
in MDM Platform Server Guide.

The following rules are created for the CDI sample application:

The Inbound service and LEGACY_CUSTOMER table.

SQL_FILTER - Type

LEGACY_CUST_FILTER_CTY_INDIA

The Master service and LEGACY_CUSTOMER table.

SQL-VALIDATION - Type

FAMILY MEMBER MAY NOT BE MORE THAN THREE - WARNING

CREDIT_RISK_CLASS_SQLValidation - ERROR

SQL-INSERT - Type

Modify_CustState_To_INCOMING - Query Type - Update

To load the input staging data into the master tables, call the Data Load Workflow (E2E) that
is a part of Inbound staging service. For detailed information on E2E, refer MDM Platform
Server Guide.
Master Data Manager Developer Guide 104

Chapter 10: Sample Application Process
Sample Application CDI Process Flow
Data Cleansing
The data cleansing process identifies and isolates specific parts of mixed data and
standardizes data based on information stored in the database. In the CDI sample application,
data cleansing is performed for Address attributes. You can achieve this by defining a rule,
which is part of the Master Service and is called by the E2E process’s “Pre Custom Action”.

This workflow node is located at the beginning of the E2E data load process workflow. The
data cleansing rule works mainly on the inbound staging tables and by default called by the
E2E process, hence include the data cleansing rule in the customize rule file, which is part of
the E2E service.

The below xcore request will execute the data standardization rule.

The data standardization rules cleanse and standardize the data before moving it to the
reference (Master) area table. The method is defined in the customRules.xml of the E2E
service and it is part of RULE.

The details of the data standardization rules are given below:

<REQUEST AssignToVar="custStateIncomingData" Name="enrichIncomingData"
ServiceName="BCM_MASTER"/>

 Rule Modify_BOULEVARD_to_BLVD is modify the word “BOULEVARD” into
“BLVD” in the Address column values of the In bound Legacy_Customer

Table or Document

Rule Modify_DRIVE_to_DR is modify the word “DRIVE” into
“DR” in the Address column values of the In bound Legacy_Customer

Table or Document
Master Data Manager Developer Guide 105

Chapter 10: Sample Application Process
Sample Application CDI Process Flow
After the E2E process runs successfully, all unique customer records are moved to the master
area of the Legacy Customer table. Now that table has standardized customer data. If the E2E
process finds any error record then those records are moved to the respective error table of the
master service. During this process, the following physical table is gets involved:

LEGACY_CUSTOMER (MST_LEGACY_CUSTOMER)

After execution of the above rules, LEGACY_CUSTOMER
(MST_LEGACY_CUSTOMER) table will have all cleansed records. All of the records are
cleansed, enriched and the status has been updated with CUST_STATE set to ‘INCOMING’.

Figure 72: LEGACY_CUSTOMER

Rule Modify_STREET_to_ST is modify the word “STREET” into
“ST” in the Address column values of the In bound Legacy_Customer

Table or Document

Rule Modify_ROAD_to_RD is modify the word “ROAD” into
“RD” in the Address column values of the In bound Legacy_Customer

Table or Document

Rule Modify_UnitedStates_to_USA is modify the word “UnitedStates” into
“USA” in the Country column values of the In bound Legacy_Customer

Table or Document
Master Data Manager Developer Guide 106

Chapter 10: Sample Application Process
Sample Application CDI Process Flow
Matching/Duplicate Recognition & Automated Cross-reference
This process identifies matched and duplicate records and displays a single customer view.
The matching and duplicate recognition requires the Customer Dashboard workflow, which is
part of the sample application’s master service.

Launch the Customer Dashboard page on the MDM UI. On the MDM UI, expand Tasks bar,
expand Customer Data, expand Customer Management and click Customer Dashboard as in
Figure 73.

Figure 73: Customer Dashboard

On the Customer Dashboard page, you can perform the match, duplicate recognition, resolve
the duplicate, and manage the customer functions using the following buttons.

• Manage Customers

• Duplicate Resolution

• Duplicate Recognition, Auto Merge

Click on Duplicate Recognition, Auto Merge button for executing matching & de-duplication
process. This action extracts all records from MST_LEGACY_CUSTOMER with
CUST_STATE equal to ‘INCOMING’. The match process checks to see if all required fields
in MST_LEGACY_CUSTOMER match against the MST_CUSTOMER. If
MST_CUSTOMER matches MST_LEGACY_CUSTOMER then this record is an exact
match and is called a FULL MATCH record. If it is not the same as
MST_LEGACY_CUSTOMER then this process assumes that it might be a potential
duplicate or suspect match.

For the suspect or potential duplicate match process, all required fields in
MST_LEGACY_CUSTOMER are checked against the MST_CUSTOMER. If either one of
the match returns true then the application assumes that the current record is a Suspect Match
or Potential duplicate record. If it is a suspect or potential match record then update the
MST_LEGACY_CUSTOMER’s MATCH_ID equal to MST_CUSTOMER’s PARTY_ID
value. If it does not return any match or Suspect match then the current record is a New
Customer record.

Figure 74 displays the results of match process.
Master Data Manager Developer Guide 107

Chapter 10: Sample Application Process
Sample Application CDI Process Flow
Figure 74: Customer Dashboard—Summary

In the Duplicate Recognition, Auto Merge process the following tables are involved:

• MST_LEGACY_CUSTOMER

• MST_CUSTOMER

• MST_PARTY_CUST_XREF

• MST_PARTY

• MST_PARTY_ADDRESS

Interactive Data Steward
The interactive data steward workflows for de-duping, merging, and cross-referencing are
used in cases where automation does not yield the expected results because of a duplicate
match or suspect match. To execute the interactive data steward workflow, click Duplicate
Resolution button on the Customer Dashboard page (Figure 74). The Survivorship page
(Figure 75) is displayed.

Figure 75: MDM Survivorship UI
Master Data Manager Developer Guide 108

Chapter 10: Sample Application Process
Sample Application CDI Process Flow
This Survivorship page (Figure 75) displays all potential duplicate matches in the incoming
customer records. On the Survivorship page (Figure 75), your can either “Ignore the Suspect
or Duplicate Match” and create a New Customer record or choose “Interactive merge”. For
Interactive merge, both the Master Customer record and the Incoming record are displayed
for comparison. Based on this comparison, you can select the relevant information from the
both records and then click ‘SAVE MERGE’ as in Figure 76. This will update the existing
master with selected information from both records.

Figure 76: Interactive Merge Workflow UI

In the above process the following tables are involved:

• MST_LEGACY_CUSTOMER

• MST_CUSTOMER

• MST_PARTY_CUST_XREF

• MST_PARTY

• MST_PARTY_ADDRESS

Manage Customer
On the Customer Dashboard page, clicking on the Manage Customer button launches an
another workflow called Data Management workflows, which will be used to create a New
Customer, New Customer Introduction or manage the existing customers. On the Customer
Dashboard page (Figure 74), click Manage Customer. The Manage Customer page is
displayed. On the Manage Customer page, you can modify or enrich existing master customer
records. Based on the authorization of the user logged in, they are allowed to either modify
the record or just view the details.
Master Data Manager Developer Guide 109

Chapter 10: Sample Application Process
Sample Application CDI Process Flow
Figure 77: Manage Customer workflow UI

In the above process the following tables are involved:

• MST_LEGACY_CUSTOMER

• MST_CUSTOMER

• MST_PARTY_CUST_XREF

• MST_PARTY

• MST_PARTY_ADDRESS

Manage an existing customer activities include:

• Search the Customer using the workflow “Search Customer” which is located in the
Navigation “Customer Data -> Customer Management -> Search Customer”.

• Select the desired customer and modify the existing details, add more details, view the
details or get more information about the cross reference details.

• BILLING_INVOICE_GRP user group can either modify or add more billing information
for a selected customer.

• SHIPPING_DELIVERY_GRP user group can either modify or add more shipping
information for a selected customer.

• CUSTOMER_SERVICE_GRP user group can either modify or add more customer
profile information for a selected customer.

In the above process the following tables are affected:

• MST_CUSTOMER

• MST_PARTY_CUST_XREF

• MST_PARTY

• MST_PARTY_ADDRESS

• plus RLDM model tables DUSN and BUSINESS

Authentication services represent the initial login security of the solution. Authentication will
be based on an organizational model for the enterprise. The intent is to provide a single logon
security context.

In CDI sample application, there are three different user group:
Master Data Manager Developer Guide 110

Chapter 10: Sample Application Process
Sample Application CDI Process Flow
• Task

• Modify or enrich the customer profile.

• Add, modify or enrich the billing information.

• Add, modify or enrich the shipping information.

• User Group

• CUSTOMER_SERVICE_GRP

• BILLING_INVOICE_GRP

• SHIPPING_DELIVERY_GRP

Modification, Addition or Enrichment permissions:

• If login user belongs to CUSTOMER_SERVICE_GRP then they are allowed to modify
the customer profile information. Other details can be viewed.

• If login user belongs to BILLING_INVOICE_GRP then they are allowed to modify or
add the customer’s billing information. Other details can be viewed.

• If login user belongs to SHIPPING_DELIVERY_GRP then they are allowed to modify or
add the customer’s shipping information. Other details can be viewed.

• If login user belongs to Administrator then that person can modify, add or enrich all
information.

A user who belongs to the CUSTOMER_SERVICE_GRP or ADMIN user group will able to
create a new customer. Figure 78 displays the New Customer Introduction page. Once a new
customer is created then this record’s status is inactive. An Administration group user has to
approve the new customer request, other wise this record will stay in the inactive status. Once
approved by an admin user, the new customer record becomes active and is available for
modification or enrichment by other users.

Figure 78: New Customer Introduction UI
Master Data Manager Developer Guide 111

Chapter 10: Sample Application Process
Sample Application CDI Process Flow
Publishing
Publication services is a new feature in MDM 2.0 that allows the Data Steward to control the
usage and flow of Master Data to end users or to consuming processes or applications.
Publication Services allows any data within the scope of MDM to be published in multiple
formats to meet the needs and requirements of consuming application or processes.
Consuming applications or processes can retrieve data directly from the publication database,
or they can have data pushed to them from a JMS Provider Queue table via JMS Messaging.
Additionally, data can be extracted from the database into file format, and emailed directly to
business users. Along the way, an audit trail of each publication request is preserved,
including (optionally) the actual data published with each request.

Four types of publishing are supported:

• Database Table (Teradata)

• Java Message service (JMS) Queue Table

• Excel

• Text—Comma Separated File

The CDI sample application demonstrates only publishing to a Database Table method. The
publishing object is defined during design time (before bringing up the MDM server). Once
defined, the publishing facilities can be used at any point in a workflow to publish any data.

For detailed information, refer the MDM Platform Studio User Guide.

Define the service file (sampleApplication.xml – BCM_MASTER) as in Figure 79. Figure 80
displays the workflow to publish data.

Figure 79: Define Service File

Figure 80: Workflow to Publish Data

Data Syndication
Data Syndication exposes the master data to the outside world, 3rd party system or back to the
source system. Using ETL or EAI, you can access the data from published object type of
format.
Master Data Manager Developer Guide 112

Chapter 10: Sample Application Process
Sample Application with Trillium Process Flow
Sample Application with Trillium Process Flow

Summary
The sample application with Trillium (CDI) is the same as sample application with CDI
except it uses the Trillium Cleanse and Match functionality to identify duplicates and also
while introducing the new customers.

Trillium Process Flow
Figure 81 and Figure 82 displays the sample application with Trillium process flow.

Figure 81: CDI Process Flow (Trillium)
Master Data Manager Developer Guide 113

Chapter 10: Sample Application Process
Sample Application with Trillium Process Flow
Figure 82: Trillium CDI Process Flow

Figure 82 represents the overall Trillium CDI process flow using Teradata MDM. Teradata
MDM handles data acquisition from the external source system or 3rd party legacy system,
business validation, basic data type validation, other validations, data cleansing, data
enrichment, matching and duplicate recognition, and publishing. Teradata MDM also handles
processes like identifying the cross reference customer, interactive data steward UI process,
customer management process and data reconstruction and syndication.

Data Acquisition
See “Data Acquisition” in “Sample Application CDI Process Flow”.

Data Validation
See “Data Validation and Enrichment” in “Sample Application CDI Process Flow”.

Data Cleansing
See “Data Cleansing” in “Sample Application CDI Process Flow”. This section describes the
first level of cleansing using MDM capabilities.

Trillium Data Cleansing
In this process, additional customer data cleansing capabilities are described when utilizing
the Trillium Cleanser. These capabilities are provided when the Data Cleanse and Match
workflow is called. The Data Cleanse and Match workflow is part of the master service and
you can access the Data Cleanse and Match workflow on the MDM UI (expand Tasks bar,
Sample CDI demo->Customer Data -> Enhanced Data Cleansing and Matching -> Data
Cleansing and Matching.
Master Data Manager Developer Guide 114

Chapter 10: Sample Application Process
Sample Application with Trillium Process Flow
For more details about Trillium Cleanser, refer to the Trillium Directors Guide.

The Data Cleanse and Match workflow will fetch all incoming records from
MST_LEGACY_CUSTOMER and through the appropriate user interaction, the Trillium
Cleanser will be called internally. Within the call, Teradata MDM passes the Complete Name,
Complete Street Address, City, State, Postal code and two character Country Code to
Trillium. In turn, the Trillium Cleanser returns the cleansed/corrected variables, as well as, the
enriched variables like Latitudes and Longitudes. Based on these variables, MDM will update
the MST_LEAGACY_CUSTOMER with the ‘Window Key’. The ‘Window key’ is the value
used to identify duplicates and is used in the matching algorithm. In this workflow, the
EXECUTE_TRILLIUM tag is used to connect to the Trillium Cleanser. For the cleansing
function to be utilized, Trillium Cleanser configuration setup must occur. Regarding the
Trillium Cleanser Configuration setup, refer to Utility Operations section in MDM Platform
Reference Guide.pdf.

Below is an example of using the EXECUTE_TRILLIUM tag in MDM for cleansing:

<EXECUTE_TRILLIUM Type="Cleanse" SYS_ID="G" serverName="Cleanser"
RootTag="CustomerData/PrimaryCustomer/Address"
AssignToVar="TrilliumXMLData">
<CustomerData>
 <REQUESTTYPE>Cleanse</REQUESTTYPE>
 <PrimaryCustomer>
<!-- Input Variables -->
 <Name>ALAN WOLFSON</Name>
 <Address>
 <!-- Input Variables -->
 <StreetLine1>25 Linnell Circle</StreetLine1>
 <StreetLine2/>
 <City>Billerica</City>
 <State>MA</State>
 <Country>US</Country>
 <ZipCode>01821</ZipCode>
 <!-- output Variables -->
 <WINDOW_KEY_01></WINDOW_KEY_01>
 <NEWADDRL1></NEWADDRL1>
 <PR_NAME_GENDER_01></PR_NAME_GENDER_01>
 <US_GOUT_STREET_SUFFIX></US_GOUT_STREET_SUFFIX>
 <US_CEN_RESLV_LONGITUDE></US_CEN_RESLV_LONGITUDE>
 <US_CEN_RESLV_LATITUDE></US_CEN_RESLV_LATITUDE>
 <US_CEN_RESLV_COORD_LEVEL></US_CEN_RESLV_COORD_LEVEL>
 <US_GOUT_HOUSE_NUMBER></US_GOUT_HOUSE_NUMBER>
 <US_GOUT_STREET_NAME></US_GOUT_STREET_NAME>
 <US_GOUT_POSTAL_CITY_NAME></US_GOUT_POSTAL_CITY_NAME>
 <US_GOUT_STATE_NAME></US_GOUT_STATE_NAME>
 <US_GOUT_POSTAL_CODE></US_GOUT_POSTAL_CODE>
 <US_GOUT_MATCH_LEVEL></US_GOUT_MATCH_LEVEL>
 <US_GOUT_SECONDARY_NUMBER></US_GOUT_SECONDARY_NUMBER>
 <US_GOUT_RECORD_TYPE></US_GOUT_RECORD_TYPE>
 <LEV2_MATCHED_PATTERN></LEV2_MATCHED_PATTERN>
 <NEWADDRL2></NEWADDRL2>
 <PR_NAME_SUFFIX_RECODED_01></PR_NAME_SUFFIX_RECODED_01>
 <PR_GIVEN_NAME1_RECODED_01></PR_GIVEN_NAME1_RECODED_01>
 <PR_SURNAME1_RECODED_01></PR_SURNAME1_RECODED_01>
 </Address>
 </PrimaryCustomer>
Master Data Manager Developer Guide 115

Chapter 10: Sample Application Process
Sample Application with Trillium Process Flow
</CustomerData>
</EXECUTE_TRILLIUM>

Trillium Matching/Duplicate Recognition & Automated Cross-
reference
In this process we identify ‘matched’ and ‘duplicate’ records in order to enforce a single
customer view. These capabilities are provided when the Data Cleanse and Match workflow
is called. In this workflow, once the cleansing functions occur, the Matching portion takes
place in the Trillium Matcher. Here we need to select all records and send ‘matched’ records
and incoming records into the Trillium Matcher. The Trillium Matcher will identify the ‘100
percent’ closest records and return with the ‘match’ or a pattern score. Based upon the
returned value a complete match or potential match can be determined. Our
EXECUTE_TRILLIUM Tag expects two sets of inputs in order to identify the match record.
The first set of inputs is the ‘match’ record, that is, which record are we looking to match. The
second set of inputs is the master records, that is, which records are we looking to compare.
Based on these inputs, the Trillium Matcher performs matching functionality and returns the
input records with a pattern score against each master record. Based upon that, TMDM can
identify which are duplicates or potential duplicates using our business functionality. For the
Matching function to be utilized, the Trillium Matching configuration setup must occur.
Regarding the Trillium Matching Configuration setup, refer Utility Operations section in
MDM Platform Reference Guide.pdf. Based on that only Trillium returns the matched output
to the caller.

During the matching process, Teradata MDM extracts all records from
MST_LEGACY_CUSTOMER with CUST_STATE equal to ‘INCOMING’. If
MST_CUSTOMER’s ‘Window Key’ matches the MST_LEGACY_CUSTOMER’s ‘Window
Key’ then this record is considered as an exact Match. MDM then passes these
MST_CUSTOMER records, as candidates, and the MST_LEGACY_CUSTOMER record as
Primary records to the Trillium Matcher. Based on the return value of pattern code, MDM
will identify the ‘FULL MATCH’ record or ‘Potential Duplicate’ or ‘Suspect Match’. If it is a
suspect or potential match record then update the MST_LEGACY_CUSTOMER’s
MATCH_ID equal to MST_CUSTOMER’s PARTY_ID value. If it does not return any
‘Suspect Match’ or ‘Potential Match’ then the current record is considered a New Customer
record.

Below is an example of using the EXECUTE_TRILLIUM tag in MDM for matching:

<EXECUTE_TRILLIUM Type="MatchSuspect" SYS_ID="G" serverName="RMatcher"
RootTag="CustomerData/PrimaryCustomer"
AssignToVar="TrilliumXMLMatchData">
<CustomerData>
<REQUESTTYPE>RMatch</REQUESTTYPE>
<!— Going Match - Incoming record data ?
 <PrimaryCustomer>
<Name>John Smith</Name>

<PartyID>1234</PartyID>
<Address>

 <StreetLine1>170 Lexington Road</StreetLine1>
 <StreetLine2/>

<City>Billerica</City>
<State>MA</State>
Master Data Manager Developer Guide 116

Chapter 10: Sample Application Process
Sample Application with Trillium Process Flow
<Country>US</Country>
<ZipCode>01821</ZipCode>

</Address>
 </PrimaryCustomer>
<!—Masters record data ?

 <Candidate>
<Name>John Smith</Name>
<PartyID>1235</PartyID>
<Address>

<StreetLine1>170 Lexington Road</StreetLine1>
<StreetLine2/>
<City>Billerica</City>
<State>MA</State>
<Country>US</Country>
<ZipCode>01821</ZipCode>

</Address>
 </Candidate>
 <Candidate>
<Name>Carl Smith</Name>

<PartyID>1236</PartyID>
<Address>

<StreetLine1>170 Lexington Street</StreetLine1>
<StreetLine2/>
<City>Billerica</City>
<State>MA</State>
<Country>US</Country>
<ZipCode>01821</ZipCode>

</Address>
 </Candidate>
</CustomerData>
</EXECUTE_TRILLIUM>

In the process the following tables are involved:

• MST_LEGACY_CUSTOMER

• MST_CUSTOMER

• MST_PARTY_CUST_XREF

• MST_PARTY

• MST_PARTY_ADDRESS

Interactive Data Steward
See “Interactive Data Steward” in “Sample Application CDI Process Flow”.

Manage Customer
See “Manage Customer” in “Sample Application CDI Process Flow”. The Introducing New
customer section utilizes the Trillium Cleanse and Match feature to identify the Duplicate
records. If the record is determined to be a duplicate, then it shows with the matched records
and an accompanying warning message. Based on the user selection, MDM will create a new
customer.

Publishing
See “Publishing” in “Sample Application CDI Process Flow”.
Master Data Manager Developer Guide 117

Chapter 10: Sample Application Process
Sample Application with Trillium Process Flow
Data Syndication
See “Data Syndication” in “Sample Application CDI Process Flow”.
Master Data Manager Developer Guide 118

APPENDIX A Publication Services

What’s In This Appendix

This appendix provides information on Publication Services.

Topics include:

• Introduction

• Logical Data Model

Introduction

Publication Services is a new feature in MDM 2.0 that allows the Data Steward to control the
usage and flow of Master Data to end users or to consuming processes or applications.
Publication Services allows any data within the scope of MDM to be published in multiple
formats, to meet the needs and requirements of consuming application or processes.
Consuming applications or processes can retrieve data directly from the Publication database,
or they can have data pushed to them from a JMS Provider Queue table via JMS Messaging.
Additionally, data can be extracted from the database into file format, and emailed directly to
business users. Along the way, an audit trail of each publication request is preserved,
including (optionally) the actual data published with each request.
Master Data Manager Developer Guide 119

Appendix A: Publication Services
Introduction
Figure 83: Publication Services

To accomplish this goal, Publication Services have been integrated directly into the MDM
(MDM) Workflow engine. This means that there is both a design time and a run time
component to Publication Services. At design-time, the Data Steward can create workflows
containing Publication Nodes. Publication Nodes are used to push MDM managed data to
consuming processes or applications, or directly to business users. When MDM is running,
the Data Steward can explicitly execute these workflows through the MDM user interface to
effectively prepare and publish the data for a specific application, process, or business user.
The MDM user interface is generally one that has been created explicitly for the Data Steward
at design time, using MDM Studio, and it includes all of the user interfaces and workflows
that can be used by the Data Steward to control the flow of data.

Through Publishing Services, customers can use Workflows to Publish data. Data can be
published for a variety of reasons:

• Error records can be published directly to the Data Steward as part of a Data Quality
workflow

• New records can be pushed to consuming applications

• Critical updates to the master data can be published to consuming applications

To support the Publishing Services framework, several new conceptual objects are going to
be defined. These include:

• Publication Object

• Publication Method

• Publication Workflow Node

This section will describe these new conceptual objects, and show how they will all work
together in Publication Services.
Master Data Manager Developer Guide 120

Appendix A: Publication Services
Introduction
Publication Object
A Publication Object is defined as any collection of information that can be published to a
downstream application, process, or end user. A Publication Object is comprised of a
Publication Key, and the Publication MetaData. In the context of publishing Master Data, the
Publication Meta Data specifies the composition of the data (tables and columns) that will be
published to the downstream consuming application, process, or user. In the context of
Teradata MDM, Publication MetaData is represented by one or more XDocuments, and their
respective properties. XDocuments and Properties are used by Teradata MDM processes to
denote underlying Tables and Columns respectively. The Publication Key is used to create a
singular reference to this collection of data.

It should also be noted that a Publication Object can be referenced directly in a Workflow
node through its Publication Key. For example, referring to a “Customer” Key will result in
publishing all of the underlying data structures that have been mapped to “Customer”.

Publication Method
The Publication Method is defined as the manner in which the data will be published. There
are a variety of mechanisms for actually publishing data to another application, process, or to
an end user. These methods include:

• Publishing data to a separate set of Tables – this option will publish MDM controlled data
into a set of database tables that reside in the Publication database.

• Publishing to a JMS Provider Queue table – this option will publish the MDM controlled
data into a Teradata Queue table, such that the data can be pushed out via the Teradata
JMS Provider utility. In this option, the target table will be created as Teradata Queue
table through MDM publishing and data will be moved to underlying Queue table with
first column QITS of datatype Timestamp (6) and rest of the columns same as the source
table columns, for easy transfer to consuming applications.

• Publishing data to Excel Spreadsheet Format – in this format, the MDM controlled data
will be exported into a single Microsoft 2003 compliant spreadsheet. Within this
spreadsheet, there will be one worksheet per XDocument (a Publication Object may
consist of more than one XDocument). In MDM 2.0, this file will be emailed to a single
user, as specified in the Publication Workflow node.

• Publishing data to a text file, in Comma-Separated-Value (CSV) format – in this format,
the MDM controlled data will be exported into one or more text files. Each text file
contains the data – in a comma separated format – of a single XDocument. These text
file(s) are emailed to a single user, as specified in the Publication Workflow node.

Publication Node
A Publication Node is a new processing node that can be inserted into any MDM workflow.
The Publication Node is used the data that should be published, and the method of
publication.
Master Data Manager Developer Guide 121

Appendix A: Publication Services
Logical Data Model
Logical Data Model

At a high level, Publication Services maintains three sets of data in the MDM databases:

• Publication Audit Database – this database contains snapshots of the data as it was
published during publication requests.

• Publication Database – this database contains published data, ready for consumption by
other applications and processes. Data published to Database Tables, or to JMS Provider
Queues will reside in tables in this database.

• Metadata Tables – these metadata tables reside in the MDM User database. Among other
functions, the metadata tables maintain pointers to the audit trail of every publication
request, and they maintain pointers to the published data (if it was published to a database
table or to a JMS Provider Queue)

Figure 84: Publication Services Databases

During the installation process, the user is prompted to enter the names for several MDM
databases, including both the Publication Audit database, and the Publication database. These
are logical databases. The Publication database must be a physically separate data from the
rest of the MDM databases, however, the Publication Audit database can be combined with
other MDM databases (it does not have to be a distinct physical database).
Master Data Manager Developer Guide 122

Appendix A: Publication Services
Logical Data Model
The remainder of this section will describe the metadata tables, and will show how they can
be used to point to the audit trail information and data contained in the Publication Audit
Database, as well as how they point to data published to the Publication database.

Metadata Tables
The Publication Services metadata tables can be broken down into four sets of tables:

• Publication Object Definition tables

• Publication Object Audit Tables

• Publication Request Tables

• Publication Request Audit tables

Publication Object Definition Tables
When Publication Objects are deployed into the database, they are converted from an XML
format into an internal metadata format that is stored in the database tables shown below:

Figure 85: Database Tables

Table Description:

• SYS_PUB_KEY – this is the main table for the Publication Object metadata. It stores a
list of all Publication Objects, and the X-Service to which they are attached. Note that the
KEY_ID of this field is generated by the system.

• SYS_PUB_DOC – A Publication Object consists of one or more X-Documents. This
table lists the X-Documents that comprise a Publication Object.

• SYS_PUB_DOC_PROPERTY – this table is reserved for future expansion. It contains a
list of the fields or properties of a table that will be published. In MDM 2.0, all properties
of a table are published.

Note: Publication Objects will have a KEY_ID generated by the system anytime they are
deployed into the MDM database. This KEY_ID is later referenced in the audit trail
Master Data Manager Developer Guide 123

Appendix A: Publication Services
Logical Data Model
information: Whenever a publication request publishes an object, an entire copy of the
publication object is copied into the audit tables, all referenced by the same KEY_ID.

When Publication Objects are re-deployed, they are assigned a new system generated key –
making it a new publication object. The original definition of the Publication Object is
maintained in the audit trails, but the newly deployed Publication Object will be identified as
a separate object, as it will have a new key_id.

Publication Object Audit Tables
When a publication object is published in the context of a specific Publication Request, a
snapshot of the Publication Object is stored in the Publication Object Audit Tables.

Figure 86: Publication Object Audit Tables

These tables are all joined by the REQUEST_ID, which is the runtime ID of the Publication
Request. This ID is a system generated ID, and is created when a new Publication Request is
issued.

Other than being linked by a common REQUEST_ID, these tables mirror in structure the
Publication Object Definition Tables described above.

Publication Request Tables
The Publication Request Tables store the runtime definition of the Publication Request as it
will be processed. These tables are joined together by a REQUEST_ID, which is generated
when the request is processed.
Master Data Manager Developer Guide 124

Appendix A: Publication Services
Logical Data Model
Figure 87: Publication Request Tables

Table Description:

• SYS_PUB_REQUEST – this is the main publication request table. This table stores the
Publication Request, which includes:

• Publication Request (“Event”) Name – name of the publication request as it is entered
in the Publication Node at design time.

• Publication Object Key – this specifies which object is being published

• Publication Method – the method or format in which the data will be published

• Audit_Code – this specifies whether or not the data will be audited with the request
(The request itself is always audited)

• Service_name – name of the service to which this publication request belongs

• Request-specific parameters, including the email address and the JMS Destination
(used when publishing to a JMS Provider Queue)

The key to this table – and all of the request tables – is the REQUEST_ID, which is
automatically generated when the request is processed.

• SYS_PUB_REQUESTX – when a request cannot be processed entirely within the
database – such as when data is being exported into an external Excel or CSV format – the
request is first audited, then moved into this table for asynchronous processing by the
MDM Server.

• SYS_PUB_DOCUMENT_MAP – this table contains a document map for each request,
which will show – for each X-Document being published – what the source table was,
what the publication database and table name are (if it is being published to the database),
and the final status and error code (if an error occurs).

Note: This is an intermediate table – the final publication document map for a publication
request can be found in the AUDIT version of this table
(SYS_PUB_DOCUMENT_MAP_AUD).
Master Data Manager Developer Guide 125

Appendix A: Publication Services
Logical Data Model
Publication Request Audit Tables
The Publication Request Audit Tables store an audit copy of the publication request, after it
has been processed. In addition to maintaining an audit trial, these tables also contain a full
listing of the request, the outcome, and error code (if there was an error), and a mapping of
where the data was published (if it was published in the database) and where the audit copy of
the data resides. These tables are joined together via the REQUEST_ID.

Figure 88: Publication Request Audit Tables

Table Description:

• SYS_PUB_REQUEST_AUD – this table contains audit copies of the publication requests
as they were processed. It is a mirror image of SYS_PUB_REQUEST.

• SYS_PUB_ERROR_AUD – this table contains error messages if there was an error
during the publishing of data (normally there will not be any errors in this table)

• SYS_PUB_REQUEST_PARM_AUD – this table is not used in MDM 2.0, but is reserved
for future use.

• SYS_PUB_DOCUMENT_MAP_AUD – this table is the most important table in the audit
trail, as it maintains for each Publication Request detailed information about:

• When the data was published

• Where it was published (if it was published in the database)

• Where the source data for this table was drawn from

• If an audit copy of the data was preserved, this table will point to that data for each X-
document published

• Publication Status – S=Success, F=Failure

• Error Code – if the publication failed, this column will contain an explanation of why
it failed
Master Data Manager Developer Guide 126

Appendix A: Publication Services
Logical Data Model
Following an Audit Trail of a Publication Request
This section will show how to follow an audit trial of a Publication Request, by following the
data in the SYS_PUB_REQUEST_AUD and SYS_PUB_DOCUMENT_MAP_AUD tables.
For this exercise, we will audit a Publication Request that was published as follows:

Publication Object contained 2 X-Documents: Customer and Order

Publication Method is set to publish the records to the Publication database

Audit is set, so that both the Publication Request and the data being published are audited.

The REQUEST_ID for this table when it was published is “10”.

Here’s what the SYS_PUB_REQUEST_AUD table contained for this record:

• REQUEST_ID: 10

• EVENT_NAME: “test1:PublishCustomerOrders”. This field will always contain a
combination of the <workflowname>:<publication node name>

• Publish Method Code:

• 0 = Publish to the Database. Other possible codes are:

• 1 = Publish to a JMS Provider Queue

• 5 = Publish to a Comma Separated Values (CSV) text file

• 6 = Publish to an Excel 2003 compliant spreadsheet

• Audit Code: 1 (1 = audit the data being published, 0 = no audit of the data (request-only))

• Publication Key: 4 --- in this case, when the Publication Objects were deployed, the
“Customer Order” Publication Object was assigned an ID of 4.

• Clean_Ind – this field is not used

• Service Name: this will contain the name of the X-Service, in this case, “Customer”

• Email: This field will contain an email address if the user is publishing via Excel or CSV
formats. This will specify to whom the file(s) were emailed. In this example, this field is
empty.

• JMS_DESTINATION: This field will contain the name of a JMS Queue (used only when
publishing to a JMS Provider Queue). In this example, this field is empty.

The SYS_PUB_DOCUMENT_MAP_AUD table contains a detailed listing of exactly where
the Published data originated, and where it resides, and it contains a listing for each X-
Document being published. In this example, the “Customer Order” Publication Object
contains two X-Documents, so there are two rows of data for this request. Here’s what this
table contains for this example (note that these results are retrieved by using the
REQUEST_ID (“10”) above):

Row 1: “Order” X-Document
• REQUEST_ID: 10

• PUB_TS: timestamp specifying when the data was published

• XDOCUMENT_NAME: Order (this is the name of the X-Document)

• SRC_DATABASE_NAME: mdm_mst (in this example, the Order data was being drawn
from the MASTER database of MDM.
Master Data Manager Developer Guide 127

Appendix A: Publication Services
Logical Data Model
• SRC_TABLE_NAME: order_pad. These two fields combined mean that the source table
for this Publication Request is MDM_MST.ORDER_PAD

• PUB_DATABASE_NAME: mdm_pub. During installation, this was the name given for
the MDM Publication Database. All data published in a database-format is published to
this database.

• PUB_TABLE_NAME: WeeklyOrders. This value was specified in the Publication Node

• AUDIT_DB: mdm_pub_audit. This value was specified during installation as the name of
the Publication Audit Database

• AUDIT_TB: PUB_10_1. The name of this table includes the ID of the request, and the
sequence of the X-Document in the Publication Object. These two fields combined mean
that an audit copy of the data being published can be found in
MDM_PUB_AUDIT.PUB_10_1. It is useful to know how to derive this, as there will
likely be a case in which a user needs to validate exactly what data was published with a
given request.

• PUB_STATUS: “S” (S=Success, F=Failure)

• PUB_ERROR_CODE: empty, as there was no error

Row 2: “Customer” X-Document
• REQUEST_ID: 10

• PUB_TS: timestamp specifying when the data was published

• XDOCUMENT_NAME: Customer (this is the name of the X-Document)

• SRC_DATABASE_NAME: mdm_mst (in this example, the Customer data was being
drawn from the MASTER database of MDM.

• SRC_TABLE_NAME: CUSTOMER. These two fields combined mean that the source
table for this Publication Request is MDM_MST.CUSTOMER

• PUB_DATABASE_NAME: mdm_pub. During installation, this was the name given for
the MDM Publication Database. All data published in a database-format is published to
this database.

• PUB_TABLE_NAME: WeeklyCustomers. This value was specified in the Publication
Node

• AUDIT_DB: mdm_pub_audit. This value was specified during installation as the name of
the Publication Audit Database

• AUDIT_TB: PUB_10_2. The name of this table includes the ID of the request, and the
sequence of the X-Document in the Publication Object. These two fields combined mean
that an audit copy of the data being published can be found in
MDM_PUB_AUDIT.PUB_10_2. It is useful to know how to derive this, as there will
likely be a case in which a user needs to validate exactly what data was published with a
given request.

• PUB_STATUS: “S” (S=Success, F=Failure)

• PUB_ERROR_CODE: empty, as there was no error

One general comment about the Pub Audit tables: The names of the tables – as shown above
– are always PUB_<Request_id>_<Sequence_id> (as in PUB_10_2), however each table
Master Data Manager Developer Guide 128

Appendix A: Publication Services
Logical Data Model
also contains a COMMENT, which in turn contains the name of the source table as well as the
Timestamp of the publishing event. This is another way to retrieve this information, although
looking at SYS_PUB_DOCUMENT_MAP_AUD provides this information as well, as
shown above.

The comments can be found in the DBC.Tables for each table.
Master Data Manager Developer Guide 129

APPENDIX B Configuration of Trillium Client

What’s In This Appendix

This appendix provides information on configuring Trillium client.

Topics include:

• Trillium Client Setup in MDM

Trillium Client Setup in MDM

Execute the following steps to setup Trillium client in MDM:

If the Trillium server and MDM server are running on the same system, execute from step 3
else if Trillium server and MDM server are running on different systems, execute from step1
and skip step 3.

1 Configure Trillium client on MDM server system.

Copy the entire bin folder from <Trillium_Installed_Location>\ tsq11r0s\Software\bin to
the MDM client machine and set the TRILLDIRPORT and TRILLDIRADDR
environment variables.

For example, on windows, the bin folder (c:\Trillium\tsq11r0s\Software\bin) will have all
the required files and if the remote system Trillium IP address is 255.255.255.255 and
Trillium port number is 4444, then the environment variables setting would be as shown
below:

set PATH = c:\Trillium\tsq11r0s\Software\bin;%PATH%.

set TRILLDIRADDR = 255.255.255.255

set TRILLDIRPORT = 4444

Note: The static ports set for Cleanser and Matcher should be open on the firewall.

Refer to Trillium Director manual for detailed information on configuring Trillium client.

2 On Trillium client side, environment variable TRILLCONFIG should be referring the
TrilXML.cfg file. Because Teradata MDM supports only XML based cleanse and Match
functionality of Trillium.

Copy the file TrilXML.cfg from location
<TrilliumSoftware_Install_Location>\tsq11r0s\<project _name>\settings\TrilXML.cfg
from the server's project setting location and paste into client.

3 On Trillium Server side, environment variable TRILLCONFIG should be referring the
TrilXML.cfg file. Because Teradata MDM supports only XML based cleanse and Match
functionality of Trillium.
Master Data Manager Developer Guide 130

Appendix B: Configuration of Trillium Client
Trillium Client Setup in MDM
set TRILLCONFIG=..\TrilliumSoftwareHH\tsq11r0s\<project
_name>\settings\TrilXML.cfg

Note: The above Trillium configuration steps are certified on the Windows operating
system only.

4 If you want to use Teradata Sample application using Trillium cleanse and match, then
execute the below listed steps else you can skip the below steps:

If existing and specific project's TrilXML file does not have below listed variables then
include these variables in to the files.

For Cleanser:
Master Data Manager Developer Guide 131

Appendix B: Configuration of Trillium Client
Trillium Client Setup in MDM
For Matcher:
Master Data Manager Developer Guide 132

Appendix B: Configuration of Trillium Client
Trillium Client Setup in MDM
5 On the MDM side, in the bcmenv batch file located at
<MDM_Install_Directory>\custom\<SampleApplicationName>\bin need to set and add
the Trillium files

set TRILLIUM_CLASSPATH=Trillium Software <installed location >
\tsq11r0s\Software\bin;

set
CLASSPATH=%CLASSPATH%;%POI_JARS%;%JAVA_HOME%\lib\tools.jar;%TRILLI
UM_CLASSPATH%

6 For Sample Application with Trillium base, execute the below steps at server machine.
Navigate to specific projects (director_proj)/settings.

a Open the ..\\TrilliumSoftware\tsq11r0s\director_proj\settings\DIRCleanser.xml and for
US country, modify the DATAREC tag as below.

b Open the ..\\TrilliumSoftware\tsq11r0s\director_proj\ddl\ustsqfrmt.ddx and locate the
field "LINE_01" and modify the REDEFINE tag as below.

c Open the ..\\TrilliumSoftware\tsq11r0s\director_proj\ settings\DIRCleanser.xml and
locate winkey which is for non-country specific and modify the value as below:

d In the above file (DIRCleanser.xml) locate uswinKey which is for US country and
modify value as below:

e Open the ..\\TrilliumSoftware\tsq11r0s\director_proj\ settings\uspmatch.stx and locate
tag </PROCESS_SETTINGS> and next to that add the below lines. In highlighted
section, provide actual path information to enrichment.
Master Data Manager Developer Guide 133

Appendix B: Configuration of Trillium Client
Trillium Client Setup in MDM
f Open the ..\\TrilliumSoftware\tsq11r0s\director_proj\ settings\ usdrrules.sto and locate
rule name "copy_all" and add below lines for "PR_NAME_FORM_01 = '1'"

g Open the ..\\TrilliumSoftware\tsq11r0s\director_proj\ settings\ usdrrules.sto and locate
rule name "matched_box_rr" and add below lines:

h Open the ..\\TrilliumSoftware\tsq11r0s\director_proj\ settings\ usdrrules.sto and locate
rule name "matched_routine_address" and add below lines

7 Re-start the Director, Cleanser and Matcher.

Note: (Tested only on Windows) and all the above setup will work for remote access.
Master Data Manager Developer Guide 134

Appendix B: Configuration of Trillium Client
Trillium Client Setup in MDM
Based on the configuration of TrilXML.cfg file and input format of MDM
EXECUTE_TRILLIUM tag, EXECUTE_TRILLIUM tag will return the output variables
for Cleanser and Matcher. TrilXML configuration file and input/output format will
depend on the projects available in the Trillium server side. For more detailed information
about configuration of TrilXML.cfg, refer the Trillium Director Guide and for more
detailed information about EXECUTE_TRILLIUM tag, refer Section Services Reference
in MDM Platform Reference Guide.

Note: The above configuration supports only Trillium version 11, but
EXECUTE_TRILLIUM tag supports Trillium version 11 and 12.
Master Data Manager Developer Guide 135

APPENDIX C MDM Custom Web Services

What’s In This Appendix

This appendix provides information on MDM custom Web services.

Topics include:

• Introduction

Introduction

Sample Application has two type of web service support: Incoming Web Services (Teradata
MDM Web Service) and Outgoing Web Services (Teradata MDM Web Service and Third
Party Web Service).

Incoming Teradata MDM Web Service

SampleApplication uses a set of operations to show the examples of Web services. Sample
Application has a rule common entity support that is CRUD (Create, Read, Update Delete)
method. The CRUD method can perform five operations:

• Addition - Creation of new record

• Modification

• Deletion

• Mass modification

• Get - Query the specific entity

SampleApplication has a workflow called Core Service to use CRUD and Mass Update
operation. The Core Service workflow uses customWebService.xml rule that contains five
methods which describe CRUD and Mass Update operation as listed below:

• addDocumentDetails

• getDocumentDetails

• modifyDocumentDetails

• massUpdateDetails

• delDocumentDetails

Custom web service WSDL uses authentication to provide security, so only MDM user can
access the Custom web service. The Workflow file and Rule file are available at:
Master Data Manager Developer Guide 136

Appendix C: MDM Custom Web Services
Incoming Teradata MDM Web Service
<MDM_Install_Directory>\custom\sampleApplication\cfg\xservice\sampleApplication\work
flows\webServices\ customWebService_WF.xml

<MDM_Install_Directory>\custom\sampleApplication\cfg\xservice\sampleApplication\rules
\ WebService\ customWebService.xml

Installation and Setup Instructions for MDM Web Service
For enabling MDM Web services in custom application, perform the steps listed in
Installation and Setup Instructions given in Web Services Implementation chapter of MDM
Platform Studio User Guide.pdf.

To Enable Custom Web Service in SampleApplication
Perform the following steps for enabling custom web service in sampleapplication:

1 Install sample application and open MDM Studio.

2 Copy the BCM_MASTER.aar file from
<MDM_Install_Directory>\custom\sampleApplication\testdata\WSDL\customWebServic
es to <MDM_Install_Directory>\web\mdmclient\WEB-INF\services

3 On the MDM Studio, in the Project Navigator pane, add a new group under Web Services.

4 Right click the new group and select Insert WSDL.

5 Select Loading Mechanism as "File Based" and click OK.

6 Provide the path to the BCM_MASTER.wsdl from
<MDM_Install_Directory>\custom\sampleApplication\testdata\WSDL\customWebServic
es

7 Right click imported WSDL in Studio and Select Activate (MDM need to be restarted if it
is already running).

8 Clear cache and temp folder for web logic server and Start BEA web logic server.

For detailed steps, refer to Web Services Implementation chapter of MDM Platform Studio
User Guide.pdf.

Sample Web Service Function in MDM
Custom Web Service rule expects the below listed format and gives the response according to
this definition.

Example:

<DEFINE_METHOD Name="addDocumentDetails" Access="public">

 <API_DOC>

 <INPUT>

 <REQUEST Name="addDocumentDetails"
DocumentName="LEGACY_CUSTOMER"

 ServiceName="BCM_MASTER" OrderIndicator="true" Any="true">

 <ATTRIBUTE OrderIndicator="true">
Master Data Manager Developer Guide 137

Appendix C: MDM Custom Web Services
Incoming Teradata MDM Web Service
 <ATTRIBUTE Name="CUST_ID" Value="1" Repeatable="true"

 Optional="true"/>

 </ATTRIBUTE>

 </REQUEST>

 </INPUT>

 <OUTPUT>

 <ON_SUCCESS>

 <RESPONSES Status="Success">

 <RESPONSE Status="Success" OrderIndicator="true">

 <ANY Repeatable="true" Optional="true" Any="true"/>

 </RESPONSE>

 </RESPONSES>

 </ON_SUCCESS>

 </OUTPUT>

 </API_DOC>

 <RULE>

 <ACTION>

……….

……….

……….

 </ACTION>

 </RULE>

 </DEFINE_METHOD>

Request Format
All the rules expect some kind of request format. So to achieve that format sampleApplication
uses Core service workflow where you can user select the operation to perform on selected
document and provide some inputs based on operations.

By using the input to that workflow, the desired request format for a selected operation is
formed, call the WSDL node and pass the constructed request to WSDL node.

Adding a record to a document

METHOD NAME: addDocumentDetails

Example: - Request Format to invoke the rule

<bcm:addDocumentDetails xmlns:bcm="http://www.teradata.com/
BCM_MASTER"

 DocumentName="ADDRESS" ServiceName="BCM_MASTER">

 <ATTRIBUTE>

 <ATTRIBUTE Value="1" Name="Address_Id"/>
Master Data Manager Developer Guide 138

Appendix C: MDM Custom Web Services
Incoming Teradata MDM Web Service
 <ATTRIBUTE Value="1" Name="Address_Type_Cd"/>

 <ATTRIBUTE Value="UI" Name="SOURCE"/>

 <ATTRIBUTE Value="ACTIVE" Name="ENTITY_STATE"/>

 </ATTRIBUTE>

 </bcm:addDocumentDetails>

Send a request to WSDL node under WSDL Transform Input tab as in Figure 89. WSDL node
uses "WsdlparametersIn" variable as an input parameter.

Figure 89: WSDL Transform Input
Master Data Manager Developer Guide 139

Appendix C: MDM Custom Web Services
Incoming Teradata MDM Web Service
 Response
<ns0:addDocumentDetailsResponse

xmlns:ns0="http://www.teradata.com/BCM_MASTER"
Status="Success">
 <RESPONSE Status="Success">
 <RESPONSE>
 <CUST_ID Value="1"/>
 <ORG_ID Value="1"/>
 <MESSAGE Value="RECORD ADDED SUCCESSFULLY"/>
 </RESPONSE>
 </RESPONSE>
 </ns0:addDocumentDetailsResponse>

The Figure 90 displays the response under WSDL transform Output tab. WSDL node uses
"WsdlparametersOut" variable as an output parameter.
Master Data Manager Developer Guide 140

Appendix C: MDM Custom Web Services
Incoming Teradata MDM Web Service
Figure 90: WSDL Transform Output

Getting a record from a document

METHOD NAME: getDocumentDetails

Example: Request Format to invoke the rule

<bcm:getDocumentDetails xmlns:bcm="http://www.teradata.com/
BCM_MASTER"

 DocumentName="ADDRESS" ServiceName="BCM_MASTER">

 <ATTRIBUTE>

 <ATTRIBUTE Value="1" Name="Address_Id"/>
Master Data Manager Developer Guide 141

Appendix C: MDM Custom Web Services
Incoming Teradata MDM Web Service
 </ATTRIBUTE>

 </bcm:getDocumentDetails>

Response

 <ns0:getDocumentDetailsResponse

 xmlns:ns0="http://www.teradata.com/BCM_MASTER"
Status="Success">

 <RESPONSE Status="Success">

 <RESPONSE>

 <ADDRESS ExistingDocument="yes">

 <Address_Id Value="1"/>

 <Address_Type_Cd Value="MAILING"/>

 <ENTITY_STATE Value="ACTIVE"/>

 <SOURCE Value="BackEnd"/>

 </ADDRESS>

 </RESPONSE>

 </RESPONSE>

 </ns0:getDocumentDetailsResponse>

Updating a record in a document

METHOD NAME: modifyDocumentDetails

Example: - Request Format to invoke the rule

This request has two types of tags:

DOCUMENT_CONTEXT - This tag has the columns for which you need to modify the
record.

UPDATE_PROPERTIES - This tag has the columns which you need to modify.

<bcm:modifyDocumentDetails xmlns:bcm="http://www.teradata.com/
BCM_MASTER"

 DocumentName="ADDRESS" ServiceName="BCM_MASTER">

 <DOCUMENT_CONTEXT>

 <DOCUMENT_CONTEXT Value="1" Name="Address_Id"/>

 </DOCUMENT_CONTEXT>

 <UPDATE_PROPERTIES>

 <UPDATE_PROPERTIES Value="MAILING" Name="Address_Type_Cd"/>

 <UPDATE_PROPERTIES Value="ACTIVE" Name="ENTITY_STATE"/>

 <UPDATE_PROPERTIES Value="BACKEND" Name="SOURCE"/>

 </UPDATE_PROPERTIES>

 </bcm:modifyDocumentDetails>

Response
Master Data Manager Developer Guide 142

Appendix C: MDM Custom Web Services
Incoming Teradata MDM Web Service
 <ns0: modifyDocumentDetailsResponse

 xmlns:ns0="http://www.teradata.com/BCM_MASTER"
Status="Success">

 <RESPONSE Status="Success">

 <RESPONSE>

 <MESSAGE Value="RECORD MODIFIED SUCCESSFULLY"/>

 </RESPONSE>

 </RESPONSE>

 </ns0: modifyDocumentDetailsResponse >

Mass update in a document

METHOD NAME: massUpdateDetails

Example: - Request Format to invoke the rule

This request has two types of tags:

DOCUMENT_CONTEXT - This tag has the columns for which we need to modify the
record.

UPDATE_PROPERTIES - This tag has the columns which we need to modify.

<bcm:massUpdateDetails xmlns:bcm="http://www.teradata.com/
BCM_MASTER"

 DocumentName="ADDRESS" ServiceName="BCM_MASTER">

 <DOCUMENT_CONTEXT>

 <OR>

 <AND>

 <Address_Id Value="61"/>

 <Address_Type_Cd Value="MAILING"/>

</AND>

 <AND>

 <Address_Id Value="101"/>

 <Address_Type_Cd Value="MAILING"/>

 </AND>

 <AND>

 <Address_Id Value="19"/>

 <Address_Type_Cd Value="MAILING"/>

 </AND>

 </OR>

 </DOCUMENT_CONTEXT>

 <UPDATE_PROPERTIES>

 <SOURCE Value="UI"/>
Master Data Manager Developer Guide 143

Appendix C: MDM Custom Web Services
Incoming Teradata MDM Web Service
<CREATED_BY Value="USR_1"/>

</UPDATE_PROPERTIES>

</bcm:massUpdateDetails>

Response

<ns0: massUpdateDetailsResponse

 xmlns:ns0="http://www.teradata.com/BCM_MASTER"
Status="Success">

 <RESPONSE Status="Success">

 <RESPONSE>

 <MESSAGE Value="MASS UPDATED SUCCESSFULL"/>

 </RESPONSE>

 </RESPONSE>

 </ns0: massUpdateDetailsResponse>

Deleting a record from a document

METHOD NAME: delDocumentDetails

Example: - Request Format to invoke the rule

<bcm:delDocumentDetails xmlns:bcm="http://www.teradata.com/
BCM_MASTER"

 DocumentName="ADDRESS" ServiceName="BCM_MASTER">

 <ATTRIBUTE>

 <ATTRIBUTE Value="1" Name="Address_Id"/>

 <ATTRIBUTE Value="MAILING" Name="Address_Type_Cd"/>

 </ATTRIBUTE>

 </bcm:delDocumentDetails>

Response

<ns0:delDocumentDetailsResponse

xmlns:ns0="http://www.teradata.com/BCM_MASTER" Status="Success">

 <RESPONSE Status="Success">

 <RESPONSE>

 <Address_Id Value="1"/>

 <Address_Type_Cd Value="MAILING"/>

 <MESSAGE Value="RECORD DELETED SUCCESSFULLY. "/>

 </RESPONSE>

 </RESPONSE>

 </ns0:delDocumentDetailsResponse>
Master Data Manager Developer Guide 144

Appendix C: MDM Custom Web Services
Incoming Teradata MDM Web Service
Core Service Workflow
Perform the following steps to use Core service workflow:

1 On the MDM UI, in the Tasks pane, expand Sample CDI Application, expand Other utilities,
expand Web Services and click Core Service as in Figure 91.

Figure 91: MDM_Login_Page

2 On the Login page (Figure 91), enter the MDM username and password and click Login.

Only the registered MDM users can access the custom web service, if user name or
password will not be registered the user can't navigate further on the workflow.

The Welcome page (Figure 92) is displayed.
Master Data Manager Developer Guide 145

Appendix C: MDM Custom Web Services
Incoming Teradata MDM Web Service
Figure 92: Welcome

3 On the Welcome page (Figure 92) select the operation and document name for the
BCM_MASTER service from the respective drop-downs and click Next.

The Add Details page (Figure 93) is displayed.

Figure 93: Add Details

4 On the Add Details page (Figure 93), enter the required details and click Add Details.

Message: The record added successfully is displayed.

To Get Details, perform the following steps:

1 On the Welcome page (Figure 92) select the operation as Get Details and document name
as Legacy_Customer from the respective drop-downs and click Next.

The Get Details page (Figure 94) is displayed.
Master Data Manager Developer Guide 146

Appendix C: MDM Custom Web Services
Incoming Teradata MDM Web Service
Figure 94: Get Details

To Modify Details, perform the following steps:

1 On the Welcome page (Figure 92) select the operation as Modify Details and document
name as Address from the respective drop-downs and click Next.

The Details page (Figure 95) is displayed.

Figure 95: Details

2 On the Details page (Figure 95), edit any column and click on Modify.

The Details-Modify Record page (Figure 96) is displayed.
Master Data Manager Developer Guide 147

Appendix C: MDM Custom Web Services
Incoming Teradata MDM Web Service
Figure 96: Modify Details

3 On the Details-Modify Record page (Figure 96), click Modify.

The record will be modified and the success message will be displayed on the same
screen.

To Delete Details, perform the following steps:

1 On the Welcome page (Figure 92) select the operation as Delete Details and document
name as Address from the respective drop-downs and click Next.

The Details page (Figure 95) is displayed.

2 On the Details page (Figure 95), select the required record and click Delete.

The record will be deleted and the success message will be displayed on the same screen.

To Mass Update Details, perform the following steps:

1 On the Welcome page (Figure 92) select the operation as MassUpdate and document name
as Address from the respective drop-downs and click Next.

The Mass Update page (Figure 97) is displayed.
Master Data Manager Developer Guide 148

Appendix C: MDM Custom Web Services
Incoming Teradata MDM Web Service
Figure 97: Mass Update

2 On Mass Update page (Figure 97), select the required records and click Next.

The Mass Update-Enter Details page (Figure 97) is displayed.

Figure 98: Mass Update

3 On the Mass Update-Enter Details page (Figure 97), edit the details and click Mass Update.

Message: Mass updated successfully is displayed.
Master Data Manager Developer Guide 149

Appendix C: MDM Custom Web Services
Outgoing Third Party Web Service
Outgoing Third Party Web Service

To consume third party web service, create below listed request. To achieve that request
format, sampleApplication uses yahoo workflow where user provides some inputs. By the
input to that workflow, form the desired request format, call the WSDL node and pass the
constructed request to WSDL node.

Third Party Web service - Request Format
Note: This request format will be different for other third party web service call.

Request to WSDL node passes under WSDL Transform Input tab of WSDL node.

Example:

<t:GetStockHeadlines xmlns:t="http://www.xignite.com/services/">

 <t:Symbols>TDC</t:Symbols>

 <t:HeadlineCount>2</t:HeadlineCount>

</t:GetStockHeadlines>

The Figure 99 displays the WSDL transform input.
Master Data Manager Developer Guide 150

Appendix C: MDM Custom Web Services
Outgoing Third Party Web Service
Figure 99: WSDL Transform Input

Third Party Web Service - Response
<GetStockHeadlinesResponse xmlns="http://www.xignite.com/services/">

 <GetStockHeadlinesResult>

 <StockNews>

 <Outcome>Success</Outcome>

 <Identity>IP</Identity>

 <Delay>0</Delay>
Master Data Manager Developer Guide 151

Appendix C: MDM Custom Web Services
Outgoing Third Party Web Service
 <Headline>The final frontier of business advantage</Headline>

 <Ticker>TDC</Ticker>

 <Date>11/26/2009</Date>

 <Time>1:10 PM</Time>

 <Source>FT.com</Source>

 <Url><![CDATA[http://www.ft.com/cms/s/bd48ef86-d95b-11de-b2d5-
00144feabdc0.html?referrer_id=yahoofinance&ft_ref=yahoo1&segid=03058
]]></Url>

 </StockNews>

 <StockNews>

 <Outcome>Success</Outcome>

 <Delay>0</Delay>

 <Headline>France Telecom, TDC to merge Swiss operations</
Headline>

 <Ticker>TDC</Ticker>

 <Date>11/25/2009</Date>

 <Time>6:31 AM</Time>

 <Source>AP</Source>

 <Url>http://biz.yahoo.com/ap/091125/
eu_france_telecom_tdc_swiss.html</Url>

 </StockNews>

 </GetStockHeadlinesResult>

</GetStockHeadlinesResponse>

The Figure 100 displays the WSDL transform output.
Master Data Manager Developer Guide 152

Appendix C: MDM Custom Web Services
Outgoing Third Party Web Service
Figure 100: WSDL Transform Output
Master Data Manager Developer Guide 153

Index
Index

B
Business Rules 101

Sql Filter Rule 101
Sql Insert Rule 103
Sql Update Rule 104
Sql Validation Rule 102

C
Categorize Field Types 92, 93
Custom Application 60

Creation 62
Existing 62, 74
Folder Structure 87
Location 62, 63
Models and Dictionary 64, 65
Schema Generation 69
Service 65, 68
Studio Display 63
Web UI Component 70

Customizations 20
D
Data Modeling 89
Data Models 4
Data Quality Monitors 49
Deployment Manager 50

Source of Deployment
Database option 77
File System option 79

Document Type Definition 10
Documents 18
E
Enterprise Data Warehouse 39
ERwin 92
Erwin data model 39
F
Facets 19
H
Hierarchy Management 46
I
Index 19

J
JSP 22
K
Keys 19
L
Links 19
M
Manage 117
Master Data 17
Master Data Management 2, 58

Best Practices 40
Business Architecture 5

Diagram 6
Business Solution 58
Custom Application 60
Data Architecture 17
Database Topology 8, 14

Logical Database Table 16
Development Elements 44

X-Documents 44
X-Operations 44, 45
X-Path 44, 46
X-Rules 44

Documentation viii
Implementation Methodology 6
Key Features 59
Overall Technical Architecture 8, 9
Platform Architecture 8, 11

Development and Deployment Relation-
ship 12

Logical Deployment 12
Reference Application 5
Sample Application 60

CDI 61
CDI Trillium 61

Studio Architecture 8, 9, 10
Supported Data Tye Mappings 16
Technical Architecture 3, 8

Master tables 42
Master Data Manager Developer Guide 154

Index
N
Net Change tables 42
O
Open Model Ingestion 39
P
Primary Key 19
Properties 18
Publication Meta Data 52
Publication Object 121
Publication Services 120
Publication Workflow Node 53
Purpose v
R
Recommendations 40
REQUEST_ID 124
S
Sample Application 60, 74

CDI 61
Publishing 112

CDI Dictionary and Models 89
CDI Process Flow 99, 100

Customer Dashborad 107, 108
Data Acquistion 100
Data Cleansing 105
Data Syndication 112
Data Validation and Enrichment 101

CDI Trillium 61
CDI Trillium Process Flow 113, 114

Data Acquistion 114
Data Cleansing 114
Data Syndication 118
Data Validation 114
Publishing 117

Configure Project in Eclipse 84
Customer Dashboard 107

Auto Merge 107
Interactive Data Steward 108, 117
Manage Customer 109, 117

Customer Model Relationship 99
Data Model 98

CRM Model 98
RLDM Model 99

Enable Web Services 84
Load Predefined Data 84
Model Creation 89
Model Import 89

Erwin 91
Relational Database 90
XDocs 93

Setup 74
SCHEMA generation code 15
T
Table Editors 41
Teradata Studio 3
Timer Service 52
U
Unique Key 19
User Defined 19
V
Validation Rules 41
W
Web Services 2, 47
Workflow Manager 11
Workflows 20
World Class Customer Support 54
X
XML script 21
XSL 22
Master Data Manager Developer Guide 155

	Preface
	Purpose
	About Teradata’s Master Data Management
	About This Book
	Target Audience
	What You Should Know
	Document Structure
	Changes to This Book

	Related Documentation
	To Read The Documentation

	Customer Support
	Documentation Feedback

	Table of Contents
	List of Figures
	List of Tables
	Section A —Developer Reference
	Chapter 1 Teradata MDM Overview
	Product Overview
	Product Composition
	Business Architecture
	General Process
	Technical Architecture
	MDM Studio Architecture
	MDM Platform Architecture
	MDM Database Topology
	Data Architecture

	Chapter 2 MDM Development Guidelines
	Overview
	Model Development
	Model Naming Conventions
	Model Customization Guidelines

	Business Logic Customizations
	Workflows
	Rules
	Validations
	DataPersist Rules
	Additional Best Practices on Business Logic Customizations

	User Interface Customizations
	X2 based
	PGL based
	Best Practices - PGL based UI Workflow Development

	Reuse of Code Modules
	Creating Reusable Modules

	Chapter 3 Development of an MDM Application
	Overview
	Scoping an MDM Application
	Planning an MDM Application
	Skill Set Requirements

	Building an Application in MDM Studio
	Overview
	MDM Development Elements
	X-Documents
	X-Rules
	X-Operations
	X-Path
	Key Features of Studio
	Hierarchy Management
	Web Services Support
	OMI
	Data Authorization
	Data Quality Monitors
	MDM Test Services Framework
	Deployment Support
	Sample Application Support
	List of Key Services

	Chapter 4 Customer Service
	World Class Support
	Web Access

	Chapter 5 Training
	Training Information

	Section B —Sample Application
	Chapter 6 Introduction
	Introduction
	MDM Key Features
	Studio Sample Projects
	MDM Sample Application
	Custom Application
	MDM—Sample Application (CDI) Solution
	MDM—Sample Application (CDI) Solution with Trillium Software

	Chapter 7 Custom Application
	Introduction
	Custom Application Creation
	Sample Application Setup
	Installation
	Load Pre-defined Data
	Configuring Sample Application Project in Eclipse
	Enable Web Services (Optional Step)

	Custom Application Folder Structure

	Chapter 8 Custom Models
	Creating a Model using Studio
	Importing a Model into MDM Studio
	Import from Relational Database
	Import from ERwin
	Import from XDocs

	Chapter 9 Define Web Component
	Define UI Navigation Structure
	Include into Web Component

	Chapter 10 Sample Application Process
	Introduction
	Sample Application Data Model
	Sample Application CDI Process Flow
	CDI Process Flow

	Sample Application with Trillium Process Flow
	Summary
	Trillium Process Flow

	Appendix A Publication Services
	Introduction
	Publication Object
	Publication Method
	Publication Node

	Logical Data Model
	Metadata Tables
	Following an Audit Trail of a Publication Request

	Appendix B Configuration of Trillium Client
	Trillium Client Setup in MDM

	Appendix C MDM Custom Web Services
	Introduction
	Incoming Teradata MDM Web Service
	Installation and Setup Instructions for MDM Web Service
	To Enable Custom Web Service in SampleApplication
	Sample Web Service Function in MDM
	Core Service Workflow

	Outgoing Third Party Web Service
	Third Party Web service - Request Format
	Third Party Web Service - Response

	Index

