7.00.02 - SparseSVM Functions - Aster Analytics

Teradata Aster® Analytics Foundation User GuideUpdate 2

Aster Analytics
Release Number
Release Date
September 2017
Content Type
Programming Reference
User Guide
Publication ID
English (United States)

The SparseSVMTrainer and SparseSVMPredictor functions are designed for input that is in sparse format; that is, each table row represents an attribute and each sample (observation) consists of many attributes. These functions are suitable for tasks like text classification, whose high number of attributes (many unique words) might exceed the number of columns in the table.

This implementation of SparseSVM functions solves the primal form of a linear kernel support vector machine, using gradient descent on the objective function. The implementation is based primarily on Pegasos: Primal Estimated Sub-Gradient Solver for SVM (by S. Shalev-Shwartz, Y. Singer, and N. Srebro; presented at ICML 2007).