Teradata Package for Python Function Reference | 20.00 - UnivariateStatistics - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.

Teradata® Package for Python Function Reference - 20.00

Deployment
VantageCloud
VantageCore
Edition
Enterprise
IntelliFlex
VMware
Product
Teradata Package for Python
Release Number
20.00
Published
March 2024
Language
English (United States)
Last Update
2024-04-10
dita:id
TeradataPython_FxRef_Enterprise_2000
Product Category
Teradata Vantage
 
 
UnivariateStatistics

 
Functions
       
UnivariateStatistics(newdata=None, target_columns=None, partition_columns=None, stats='ALL', centiles=[1, 5, 10, 25, 50, 75, 90, 95, 99], trim_percentile=20, **generic_arguments)
DESCRIPTION:
    UnivariateStatistics() function displays descriptive statistics for each specified numeric input DataFrame column.
 
PARAMETERS:
    newdata:
        Required Argument.
        Specifies the input teradataml DataFrame.
        Types: teradataml DataFrame
 
    target_columns:
        Required Argument.
        Specifies the name(s) of the column(s) in "data" for which univariate
        statistics need to be displayed.
        Types: str OR list of Strings (str)
 
    partition_columns:
        Optional Argument.
        Specifies the names of the input partition columns.
        Types: str OR list of Strings (str)
 
    stats:
        Optional Argument.
        Specifies the statistics to calculate.
        Permitted Values:
            * SUM
            * COUNT or CNT
            * MAXIMUM or MAX
            * MINIMUM or MIN
            * MEAN
            * UNCORRECTED SUM OF SQUARES or USS
            * NULL COUNT or NLC
            * POSITIVE VALUES COUNT or PVC
            * NEGATIVE VALUES COUNT or NVC
            * ZERO VALUES COUNT or ZVC
            * TOP5 or TOP
            * BOTTOM5 or BTM
            * RANGE or RNG
            * GEOMETRIC MEAN or GM
            * HARMONIC MEAN or HM
            * VARIANCE or VAR
            * STANDARD DEVIATION or STD
            * STANDARD ERROR or SE
            * SKEWNESS or SKW
            * KURTOSIS or KUR
            * COEFFICIENT OF VARIATION or CV
            * CORRECTED SUM OF SQUARES or CSS
            * MODE
            * MEDIAN or MED
            * UNIQUE ENTITY COUNT or UEC
            * INTERQUARTILE RANGE or IQR
            * TRIMMED MEAN or TM
            * PERCENTILES or PRC
            * ALL
        Default Value: 'ALL'
        Types: str OR list of Strings (str)
 
    centiles:
        Optional Argument.
        Specifies the percentile to calculate.
        The function ignores Centiles unless Stats specifies PERCENTILES, PRC, or ALL.
        Default Value: [1, 5, 10, 25, 50, 75, 90, 95, 99]
        Types: int or list of int
 
    trim_percentile:
        Optional Argument.
        Specifies the trimmed lower percentile.
        Default Value: 20
        Types: int
 
    **generic_arguments:
        Specifies the generic keyword arguments SQLE functions accept.
        Below are the generic keyword arguments:
            persist:
                Optional Argument.
                Specifies whether to persist the results of the function in a table or not.
                When set to True, results are persisted in a table; otherwise, results
                are garbage collected at the end of the session.
                Default Value: False
                Types: boolean
 
            volatile:
                Optional Argument.
                Specifies whether to put the results of the function in a volatile table or not.
                When set to True, results are stored in a volatile table, otherwise not.
                Default Value: False
                Types: boolean
 
        Function allows the user to partition, hash, order or local order the input
        data. These generic arguments are available for each argument that accepts
        teradataml DataFrame as input and can be accessed as:
            * "<input_data_arg_name>_partition_column" accepts str or list of str (Strings)
            * "<input_data_arg_name>_hash_column" accepts str or list of str (Strings)
            * "<input_data_arg_name>_order_column" accepts str or list of str (Strings)
            * "local_order_<input_data_arg_name>" accepts boolean
        Note:
            These generic arguments are supported by teradataml if the underlying SQL Engine
            function supports, else an exception is raised.
 
RETURNS:
    Instance of UnivariateStatistics.
    Output teradataml DataFrames can be accessed using attribute
    references, such as UnivariateStatisticsObj.<attribute_name>.
    Output teradataml DataFrame attribute name is:
        result
 
RAISES:
    TeradataMlException, TypeError, ValueError
 
EXAMPLES:
    # Notes:
    #     1. Get the connection to Vantage to execute the function.
    #     2. One must import the required functions mentioned in
    #        the example from teradataml.
    #     3. Function will raise error if not supported on the Vantage
    #        user is connected to.
 
    # Load the example data.
    load_example_data("teradataml", ["titanic"])
 
    # Create teradataml DataFrame object.
    titanic_data = DataFrame.from_table("titanic")
 
    # Check the list of available analytic functions.
    display_analytic_functions()
 
    # Example 1: Display descriptive statistics of input DataFrame
    #            column "fare" by partitioning "sex" and "age".
    obj = UnivariateStatistics(newdata=titanic_data,
                               target_columns='fare',
                               partition_columns=['sex', 'age'],
                               stats='ALL',
                               centiles=[1, 5, 10, 25, 50, 75, 90, 95, 99],
                               trim_percentile=20)
 
    # Print the result DataFrame.
    print(obj.result)