| |
- TextParser(data=None, object=None, text_column=None, convert_to_lowercase=True, stem_tokens=False, remove_stopwords=False, accumulate=None, delimiter=' \t\n\x0c\r', punctuation='!#$%&()*+,-./:;?@\\^_`{|}~', token_col_name=None, **generic_arguments)
- DESCRIPTION:
The TextParser() function can parse text and perform the following operations:
* Tokenize the text in the specified column
* Remove the punctuations from the text and convert the text to lowercase
* Remove stop words from the text and convert the text to their root forms
* Create a row for each word in the output dataframe
* Perform stemming; that is, the function identifies the common root form of a word
by removing or replacing word suffixes
Notes:
* The stems resulting from stemming may not be actual words. For example, the stem
for 'communicate' is 'commun' and the stem for 'early' is 'earli'
(trailing 'y' is replaced by 'i').
* This function requires the UTF8 client character set.
* This function does not support Pass Through Characters (PTCs).
* For information about PTCs, see Teradata Vantage™ - Analytics Database International
Character Set Support.
* This function does not support KanjiSJIS or Graphic data types.
PARAMETERS:
data:
Required Argument.
Specifies the input teradataml DataFrame.
Types: teradataml DataFrame
object:
Optional Argument.
Specifies the teradataml DataFrame containing stop words.
Types: teradataml DataFrame
text_column:
Required Argument.
Specifies the name of the input data column whose contents are to be tokenized.
Types: str
convert_to_lowercase:
Optional Argument.
Specifies whether to convert the text in "text_column" to lowercase.
Default Value: True
Types: bool
stem_tokens:
Optional Argument.
Specifies whether to convert the text in "text_column" to their root forms.
Default Value: False
Types: bool
remove_stopwords:
Optional Argument.
Specifies whether to remove stop words from the text in "text_column" before
parsing.
Default Value: False
Types: bool
accumulate:
Optional Argument.
Specifies the name(s) of input teradataml DataFrame column(s) to copy to the
output. By default, the function copies no input teradataml
DataFrame columns to the output.
Types: str OR list of Strings (str)
delimiter:
Optional Argument.
Specifies the word delimiter to apply to the text in the specified column in the
"text_column" element.
Default Value: " \t\n\f\r"
Types: str
punctuation:
Optional Argument.
Specifies the punctuation characters to replace with a space in the input text.
Default Value: "!#$%&()*+,-./:;?@\^_`{|}~"
Types: str
token_col_name:
Optional Argument.
Specifies the name for the output column that contains the individual words from
the text of the specified column in the "text_column" element.
Types: str
**generic_arguments:
Specifies the generic keyword arguments SQLE functions accept. Below
are the generic keyword arguments:
persist:
Optional Argument.
Specifies whether to persist the results of the
function in a table or not. When set to True,
results are persisted in a table; otherwise,
results are garbage collected at the end of the
session.
Default Value: False
Types: bool
volatile:
Optional Argument.
Specifies whether to put the results of the
function in a volatile table or not. When set to
True, results are stored in a volatile table,
otherwise not.
Default Value: False
Types: bool
Function allows the user to partition, hash, order or local
order the input data. These generic arguments are available
for each argument that accepts teradataml DataFrame as
input and can be accessed as:
* "<input_data_arg_name>_partition_column" accepts str or
list of str (Strings)
* "<input_data_arg_name>_hash_column" accepts str or list
of str (Strings)
* "<input_data_arg_name>_order_column" accepts str or list
of str (Strings)
* "local_order_<input_data_arg_name>" accepts boolean
Note:
These generic arguments are supported by teradataml if
the underlying SQL Engine function supports, else an
exception is raised.
RETURNS:
Instance of TextParser.
Output teradataml DataFrames can be accessed using attribute
references, such as TextParserObj.<attribute_name>.
Output teradataml DataFrame attribute name is:
result
RAISES:
TeradataMlException, TypeError, ValueError
EXAMPLES:
# Notes:
# 1. Get the connection to Vantage to execute the function.
# 2. One must import the required functions mentioned in
# the example from teradataml.
# 3. Function will raise error if not supported on the Vantage
# user is connected to.
# Load the example data.
load_example_data("textparser", ["complaints", "stop_words"])
# Create teradataml DataFrame objects.
complaints = DataFrame.from_table("complaints")
stop_words = DataFrame.from_table("stop_words")
# Check the list of available analytic functions.
display_analytic_functions()
# Example 1 : Remove all the stop words from "text_data" column
# and accumulate it by "doc_id" column.
TextParser_out = TextParser(data=complaints,
text_column="text_data",
object=stop_words,
remove_stopwords=True,
accumulate="doc_id")
# Print the result DataFrame.
print(TextParser_out.result)
# Example 2 : Convert words in "text_data" column into their root forms.
TextParser_out = TextParser(data=complaints,
text_column="text_data",
convert_to_lowercase=True,
stem_tokens=True)
# Print the result DataFrame.
print(TextParser_out.result)
|