Teradata Package for Python Function Reference | 20.00 - __init__ - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.
Teradata® Package for Python Function Reference - 20.00
- Deployment
- VantageCloud
- VantageCore
- Edition
- Enterprise
- IntelliFlex
- VMware
- Product
- Teradata Package for Python
- Release Number
- 20.00.00.03
- Published
- December 2024
- ft:locale
- en-US
- ft:lastEdition
- 2024-12-19
- dita:id
- TeradataPython_FxRef_Enterprise_2000
- Product Category
- Teradata Vantage
- teradataml.automl.__init__.AutoRegressor.__init__ = __init__(self, include=None, exclude=None, verbose=0, max_runtime_secs=None, stopping_metric=None, stopping_tolerance=None, max_models=None, custom_config_file=None, **kwargs)
- DESCRIPTION:
AutoRegressor is a special purpose AutoML feature to run regression specific tasks.
PARAMETERS:
include:
Optional Argument.
Specifies the model algorithms to be used for model training phase.
By default, all 5 models are used for training for regression and binary
classification problem, while only 3 models are used for multi-class.
Permitted Values: "glm", "svm", "knn", "decision_forest", "xgboost"
Types: str OR list of str
exclude:
Optional Argument.
Specifies the model algorithms to be excluded from model training phase.
No model is excluded by default.
Permitted Values: "glm", "svm", "knn", "decision_forest", "xgboost"
Types: str OR list of str
verbose:
Optional Argument.
Specifies the detailed execution steps based on verbose level.
Default Value: 0
Permitted Values:
* 0: prints the progress bar and leaderboard
* 1: prints the execution steps of AutoML.
* 2: prints the intermediate data between the execution of each step of AutoML.
Types: int
max_runtime_secs:
Optional Argument.
Specifies the time limit in seconds for model training.
Types: int
stopping_metric:
Required, when "stopping_tolerance" is set, otherwise optional.
Specifies the stopping mertics for stopping tolerance in model training.
Permitted Values:
* For task_type "Regression": "R2", "MAE", "MSE", "MSLE",
"MAPE", "MPE", "RMSE", "RMSLE",
"ME", "EV", "MPD", "MGD"
* For task_type "Classification": 'MICRO-F1','MACRO-F1',
'MICRO-RECALL','MACRO-RECALL',
'MICRO-PRECISION', 'MACRO-PRECISION',
'WEIGHTED-PRECISION','WEIGHTED-RECALL',
'WEIGHTED-F1', 'ACCURACY'
Types: str
stopping_tolerance:
Required, when "stopping_metric" is set, otherwise optional.
Specifies the stopping tolerance for stopping metrics in model training.
Types: float
max_models:
Optional Argument.
Specifies the maximum number of models to be trained.
Types: int
custom_config_file:
Optional Argument.
Specifies the path of JSON file in case of custom run.
Types: str
**kwargs:
Specifies the additional arguments for AutoRegressor. Below
are the additional arguments:
volatile:
Optional Argument.
Specifies whether to put the interim results of the
functions in a volatile table or not. When set to
True, results are stored in a volatile table,
otherwise not.
Default Value: False
Types: bool
persist:
Optional Argument.
Specifies whether to persist the interim results of the
functions in a table or not. When set to True,
results are persisted in a table; otherwise,
results are garbage collected at the end of the
session.
Default Value: False
Types: bool
RETURNS:
Instance of AutoRegressor.
RAISES:
TeradataMlException, TypeError, ValueError
EXAMPLES:
# Notes:
# 1. Get the connection to Vantage to execute the function.
# 2. One must import the required functions mentioned in
# the example from teradataml.
# 3. Function will raise error if not supported on the Vantage
# user is connected to.
# Load the example data.
>>> load_example_data("decisionforestpredict", ["housing_train", "housing_test"])
# Create teradataml DataFrame object.
>>> housing_train = DataFrame.from_table("housing_train")
# Example 1 : Run AutoRegressor using default options.
# Scenario : Predict the price of house based on different factors.
# Create instance of AutoRegressor.
>>> automl_obj = AutoRegressor()
# Fit the data.
>>> automl_obj.fit(housing_train, "price")
# Display leaderboard.
>>> automl_obj.leaderboard()
# Display best performing model.
>>> automl_obj.leader()
# Run predict on test data using best performing model.
>>> prediction = automl_obj.predict(housing_test)
>>> prediction
# Run predict on test data using second best performing model.
>>> prediction = automl_obj.predict(housing_test, rank=2)
>>> prediction
# Run evaluate to get performance metrics using best performing model.
>>> performance_metrics = automl_obj.evaluate(housing_test)
>>> performance_metrics
# Run evaluate to get performance metrics using second best performing model.
>>> performance_metrics = automl_obj.evaluate(housing_test, 2)
>>> performance_metrics
# Example 2 : Run AutoRegressor for regression problem with early stopping metric and tolerance.
# Scenario : Predict the price of house based on different factors.
# Use custom configuration file to customize different
# processes of AutoML Run. Define performance threshold
# to acquire for the available models, and terminate training
# upon meeting the stipulated performance criteria.
# Generate custom configuration file.
>>> AutoRegressor.generate_custom_config("custom_housing")
# Create instance of AutoRegressor.
>>> automl_obj = AutoRegressor(verbose=2,
>>> exclude="xgboost",
>>> stopping_metric="R2",
>>> stopping_tolerance=0.7,
>>> max_models=10,
>>> custom_config_file="custom_housing.json")
# Fit the data.
>>> automl_obj.fit(housing_train, "price")
# Display leaderboard.
>>> automl_obj.leaderboard()
# Run predict on test data using best performing model.
>>> prediction = automl_obj.predict(housing_test)
>>> prediction
# Run evaluate to get performance metrics using best performing model.
>>> performance_metrics = automl_obj.evaluate(housing_test)
>>> performance_metrics
# Example 3 : Run AutoRegressor for regression problem with maximum runtime.
# Scenario : Predict the price of house based on different factors.
# Run AutoML to get the best performing model in specified time.
# Create instance of AutoRegressor.
>>> automl_obj = AutoRegressor(verbose=2,
>>> exclude="xgboost",
>>> max_runtime_secs=500)
# Fit the data.
>>> automl_obj.fit(housing_train, "price")
# Display leaderboard.
>>> automl_obj.leaderboard()
# Display best performing model.
>>> automl_obj.leader()
# Run predict on test data using best performing model.
>>> prediction = automl_obj.predict(housing_test)
>>> prediction
# Run predict on test data using second best performing model.
>>> prediction = automl_obj.predict(housing_test, 2)
>>> prediction
# Run evaluate to get performance metrics using best performing model.
>>> performance_metrics = automl_obj.evaluate(housing_test)
>>> performance_metrics