Teradata Package for Python Function Reference | 20.00 - concat - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.
Teradata® Package for Python Function Reference - 20.00
- Deployment
- VantageCloud
- VantageCore
- Edition
- Enterprise
- IntelliFlex
- VMware
- Product
- Teradata Package for Python
- Release Number
- 20.00.00.03
- Published
- December 2024
- Language
- English (United States)
- Last Update
- 2024-12-19
- dita:id
- TeradataPython_FxRef_Enterprise_2000
- Product Category
- Teradata Vantage
- teradataml.dataframe.dataframe.DataFrame.concat = concat(self, other, join='OUTER', allow_duplicates=True, sort=False, ignore_index=False)
- DESCRIPTION:
Concatenates two teradataml DataFrames along the index axis.
PARAMETERS:
other:
Required Argument.
Specifies the other teradataml DataFrame with which the concatenation is
to be performed.
Types: teradataml DataFrame
join:
Optional Argument.
Specifies how to handle indexes on columns axis.
Supported values are:
* 'OUTER': It instructs the function to project all columns from both
the DataFrames. Columns not present in either DataFrame will
have a SQL NULL value.
* 'INNER': It instructs the function to project only the columns common
to both DataFrames.
Default value: 'OUTER'
Permitted values: 'INNER', 'OUTER'
Types: str
allow_duplicates:
Optional Argument.
Specifies if the result of concatenation can have duplicate rows.
Default value: True
Types: bool
sort:
Optional Argument.
Specifies a flag to sort the columns axis if it is not already aligned when the join argument is set to 'outer'.
Default value: False
Types: bool
ignore_index:
Optional argument.
Specifies whether to ignore the index columns in resulting DataFrame or not.
If True, then index columns will be ignored in the concat operation.
Default value: False
Types: bool
RETURNS:
teradataml DataFrame
RAISES:
TeradataMlException
EXAMPLES:
>>> from teradataml import load_example_data
>>> load_example_data("dataframe", "admissions_train")
>>>
>>> # Default options
>>> df = DataFrame('admissions_train')
>>> df1 = df[df.gpa == 4].select(['id', 'stats', 'masters', 'gpa'])
>>> df1
stats masters gpa
id
13 Advanced no 4.0
29 Novice yes 4.0
15 Advanced yes 4.0
>>> df2 = df[df.gpa < 2].select(['id', 'stats', 'programming', 'admitted'])
>>> df2
stats programming admitted
id
24 Advanced Novice 1
19 Advanced Advanced 0
>>>
>>> cdf = df1.concat(df2)
>>> cdf
stats masters gpa programming admitted
id
19 Advanced None NaN Advanced 0
24 Advanced None NaN Novice 1
13 Advanced no 4.0 None None
29 Novice yes 4.0 None None
15 Advanced yes 4.0 None None
>>>
>>> # join = 'inner'
>>> cdf = df1.concat(df2, join='inner')
>>> cdf
stats
id
19 Advanced
24 Advanced
13 Advanced
29 Novice
15 Advanced
>>>
>>> # allow_duplicates = True (default)
>>> cdf = df1.concat(df2)
>>> cdf
stats masters gpa programming admitted
id
19 Advanced None NaN Advanced 0
24 Advanced None NaN Novice 1
13 Advanced no 4.0 None None
29 Novice yes 4.0 None None
15 Advanced yes 4.0 None None
>>> cdf = cdf.concat(df2)
>>> cdf
stats masters gpa programming admitted
id
19 Advanced None NaN Advanced 0
13 Advanced no 4.0 None None
24 Advanced None NaN Novice 1
24 Advanced None NaN Novice 1
19 Advanced None NaN Advanced 0
29 Novice yes 4.0 None None
15 Advanced yes 4.0 None None
>>>
>>> # allow_duplicates = False
>>> cdf = cdf.concat(df2, allow_duplicates=False)
>>> cdf
stats masters gpa programming admitted
id
19 Advanced None NaN Advanced 0
29 Novice yes 4.0 None None
24 Advanced None NaN Novice 1
15 Advanced yes 4.0 None None
13 Advanced no 4.0 None None
>>>
>>> # sort = True
>>> cdf = df1.concat(df2, sort=True)
>>> cdf
admitted gpa masters programming stats
id
19 0 NaN None Advanced Advanced
24 1 NaN None Novice Advanced
13 None 4.0 no None Advanced
29 None 4.0 yes None Novice
15 None 4.0 yes None Advanced
>>>
>>> # ignore_index = True
>>> cdf = df1.concat(df2, ignore_index=True)
>>> cdf
stats masters gpa programming admitted
0 Advanced yes 4.0 None NaN
1 Advanced None NaN Advanced 0.0
2 Novice yes 4.0 None NaN
3 Advanced None NaN Novice 1.0
4 Advanced no 4.0 None NaN