Teradata Package for Python Function Reference | 20.00 - cube - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.
Teradata® Package for Python Function Reference - 20.00
- Deployment
- VantageCloud
- VantageCore
- Edition
- Enterprise
- IntelliFlex
- VMware
- Product
- Teradata Package for Python
- Release Number
- 20.00.00.03
- Published
- December 2024
- ft:locale
- en-US
- ft:lastEdition
- 2024-12-19
- dita:id
- TeradataPython_FxRef_Enterprise_2000
- lifecycle
- latest
- Product Category
- Teradata Vantage
- teradataml.dataframe.dataframe.DataFrame.cube = cube(self, columns)
- DESCRIPTION:
cube() function creates a multi-dimensional cube for the DataFrame
using the specified column(s), and there by running aggregates on
it to produce the aggregations on different dimensions.
PARAMETERS:
columns:
Required Argument.
Specifies the name(s) of input teradataml DataFrame column(s).
Types: str OR list of str(s)
RETURNS:
teradataml DataFrameGroupBy
RAISES:
TeradataMlException
EXAMPLES :
# Example 1: Analyzes the data by grouping into masters and stats dimensions.
>>> load_example_data("dataframe","admissions_train")
>>> df = DataFrame("admissions_train")
>>> df1 = df.cube(["masters", "stats"]).sum()
>>> df1
masters stats sum_id sum_gpa sum_admitted
0 no Beginner 8 3.60 1
1 None Advanced 555 84.21 16
2 None Beginner 21 18.31 3
3 yes Beginner 13 14.71 2
4 None None 820 141.67 26
5 yes Advanced 366 49.26 7
6 no None 343 63.96 16
7 None Novice 244 39.15 7
8 no Advanced 189 34.95 9
9 yes Novice 98 13.74 1