Teradata Package for Python Function Reference | 20.00 - groupby - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.
Teradata® Package for Python Function Reference - 20.00
- Deployment
- VantageCloud
- VantageCore
- Edition
- Enterprise
- IntelliFlex
- VMware
- Product
- Teradata Package for Python
- Release Number
- 20.00.00.03
- Published
- December 2024
- ft:locale
- en-US
- ft:lastEdition
- 2024-12-19
- dita:id
- TeradataPython_FxRef_Enterprise_2000
- lifecycle
- latest
- Product Category
- Teradata Vantage
- teradataml.dataframe.dataframe.DataFrame.groupby = groupby(self, columns_expr, **kwargs)
- DESCRIPTION:
Applies GroupBy to one or more columns of a teradataml Dataframe.
The result will always behaves like calling groupby with as_index=False
in pandas.
PARAMETERS:
columns_expr:
Required Argument.
Specifies the column name(s) to group by.
Types: str OR list of Strings (str)
kwargs:
Optional Argument.
Specifies keyword arguments.
option:
Optional Argument.
Specifies the groupby option.
Permitted Values: "CUBE", "ROLLUP", None
Types: str or NoneType
NOTES:
1. Users can still apply teradataml DataFrame methods (filters/sort/etc) on top of the result.
2. Consecutive operations of grouping, i.e., groupby_time(), resample() and groupby() are not permitted.
An exception will be raised. Following are some cases where exception will be raised as
"Invalid operation applied, check documentation for correct usage."
a. df.resample().groupby()
b. df.resample().resample()
c. df.resample().groupby_time()
RETURNS:
teradataml DataFrameGroupBy Object
RAISES:
TeradataMlException
EXAMPLES:
>>> load_example_data("dataframe","admissions_train")
>>> df = DataFrame("admissions_train")
>>> df1 = df.groupby(["masters"])
>>> df1.min()
masters min_id min_gpa min_stats min_programming min_admitted
0 no 3 1.87 Advanced Advanced 0
1 yes 1 1.98 Advanced Advanced 0