Teradata Package for Python Function Reference | 20.00 - iloc - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.
Teradata® Package for Python Function Reference - 20.00
- Deployment
- VantageCloud
- VantageCore
- Edition
- Enterprise
- IntelliFlex
- VMware
- Product
- Teradata Package for Python
- Release Number
- 20.00.00.03
- Published
- December 2024
- Language
- English (United States)
- Last Update
- 2024-12-19
- dita:id
- TeradataPython_FxRef_Enterprise_2000
- Product Category
- Teradata Vantage
- teradataml.dataframe.dataframe.DataFrame.iloc
- Access a group of rows and columns by integer values or a boolean array.
VALID INPUTS:
- A single integer values, e.g. 5.
- A list or array of integer values, e.g. ``[1, 2, 3]``.
- A slice object with integer values, e.g. ``1:6``.
Note: The stop value is excluded.
- A boolean array of the same length as the column axis for column access,
Note: For integer indexing on row access, the integer index values are
applied to a sorted teradataml DataFrame on the index column or the first column if
there is no index column.
RETURNS:
teradataml DataFrame
RAISE:
TeradataMlException
EXAMPLES
--------
>>> load_example_data("dataframe","sales")
>>> df = DataFrame('sales')
>>> df
Feb Jan Mar Apr datetime
accounts
Blue Inc 90.0 50 95 101 04/01/2017
Alpha Co 210.0 200 215 250 04/01/2017
Jones LLC 200.0 150 140 180 04/01/2017
Yellow Inc 90.0 None None None 04/01/2017
Orange Inc 210.0 None None 250 04/01/2017
Red Inc 200.0 150 140 None 04/01/2017
# Retrieve row using a single integer.
>>> df.iloc[1]
Feb Jan Mar Apr datetime
accounts
Blue Inc 90.0 50 95 101 04/01/2017
# List of integers. Note using ``[[]]``
>>> df.iloc[[1, 2]]
Feb Jan Mar Apr datetime
accounts
Blue Inc 90.0 50 95 101 04/01/2017
Jones LLC 200.0 150 140 180 04/01/2017
# Single integer for row and column
>>> df.iloc[5, 0]
Empty DataFrame
Columns: []
Index: [Yellow Inc]
# Single integer for row and column
>>> df.iloc[5, 1]
Feb
0 90.0
# Single integer for row and column access using a tuple
>>> df.iloc[(5, 1)]
Feb
0 90.0
# Slice for row and single integer for column access. As mentioned
# above, note the stop for the slice is excluded.
>>> df.iloc[2:5, 0]
Empty DataFrame
Columns: []
Index: [Orange Inc, Jones LLC, Red Inc]
# Slice for row and a single integer for column access. As mentioned
# above, note the stop for the slice is excluded.
>>> df.iloc[2:5, 2]
Jan
0 None
1 150
2 150
# Slice for row and column access. As mentioned
# above, note the stop for the slice is excluded.
>>> df.iloc[2:5, 0:5]
Mar Jan Feb Apr
accounts
Orange Inc None None 210.0 250
Red Inc 140 150 200.0 None
Jones LLC 140 150 200.0 180
# Empty slice for row and column access.
>>> df.iloc[:, :]
Feb Jan Mar Apr datetime
accounts
Blue Inc 90.0 50 95 101 04/01/2017
Alpha Co 210.0 200 215 250 04/01/2017
Jones LLC 200.0 150 140 180 04/01/2017
Yellow Inc 90.0 None None None 04/01/2017
Orange Inc 210.0 None None 250 04/01/2017
Red Inc 200.0 150 140 None 04/01/2017
# List of integers and boolean array for column access
>>> df.iloc[[0, 2, 3, 4], [True, True, False, False, True, True]]
Feb Apr datetime
accounts
Orange Inc 210.0 250 04/01/2017
Red Inc 200.0 None 04/01/2017
Jones LLC 200.0 180 04/01/2017
Alpha Co 210.0 250 04/01/2017