Teradata Package for Python Function Reference | 20.00 - kurtosis - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.
Teradata® Package for Python Function Reference - 20.00
- Deployment
- VantageCloud
- VantageCore
- Edition
- Enterprise
- IntelliFlex
- VMware
- Product
- Teradata Package for Python
- Release Number
- 20.00.00.03
- Published
- December 2024
- ft:locale
- en-US
- ft:lastEdition
- 2024-12-19
- dita:id
- TeradataPython_FxRef_Enterprise_2000
- Product Category
- Teradata Vantage
- teradataml.dataframe.dataframe.DataFrame.kurtosis = kurtosis(self, distinct=False)
- DESCRIPTION:
Returns column-wise kurtosis value of the dataframe.
Kurtosis is the fourth moment of the distribution of the standardized (z) values.
It is a measure of the outlier (rare, extreme observation) character of the distribution as
compared with the normal (or Gaussian) distribution.
* The normal distribution has a kurtosis of 0.
* Positive kurtosis indicates that the distribution is more outlier-prone than the
normal distribution.
* Negative kurtosis indicates that the distribution is less outlier-prone than the
normal distribution.
Notes:
1. This function is valid only on columns with numeric types.
2. Null values are not included in the result computation.
3. Following conditions will produce null result:
a. Fewer than three non-null data points in the data used for the computation.
b. Standard deviation for a column is equal to 0.
PARAMETERS:
distinct:
Optional Argument.
Specifies whether to exclude duplicate values while calculating the kurtosis value.
Default Values: False
Types: bool
RETURNS:
teradataml DataFrame object with kurtosis()
operation performed.
RAISES:
TeradataMLException
1. EXECUTION_FAILED - If kurtosis() operation fails to
generate the column-wise kurtosis value of the dataframe.
Possible error message:
Failed to perform 'kurtosis'. (Followed by error message)
2. TDMLDF_AGGREGATE_COMBINED_ERR - If the kurtosis() operation
doesn't support all the columns in the dataframe.
Possible error message:
No results. Below is/are the error message(s):
All selected columns [(col2 - PERIOD_TIME), (col3 -
BLOB)] is/are unsupported for 'kurtosis' operation.
EXAMPLES :
# Load the data to run the example.
>>> from teradataml.data.load_example_data import load_example_data
>>> load_example_data("dataframe", ["admissions_train"])
# Create teradataml dataframe.
>>> df1 = DataFrame("admissions_train")
>>> print(df1.sort("id"))
masters gpa stats programming admitted
id
1 yes 3.95 Beginner Beginner 0
2 yes 3.76 Beginner Beginner 0
3 no 3.70 Novice Beginner 1
4 yes 3.50 Beginner Novice 1
5 no 3.44 Novice Novice 0
6 yes 3.50 Beginner Advanced 1
7 yes 2.33 Novice Novice 1
8 no 3.60 Beginner Advanced 1
9 no 3.82 Advanced Advanced 1
10 no 3.71 Advanced Advanced 1
>>>
# Prints kurtosis value of each column
>>> df1.kurtosis()
kurtosis_id kurtosis_gpa kurtosis_admitted
0 -1.2 4.052659 -1.6582
>>>
#
# Using kurtosis() as Time Series Aggregate.
#
>>> # Load the example datasets.
... load_example_data("dataframe", ["ocean_buoys"])
>>>
>>> # Create the required DataFrames.
... # DataFrame on non-sequenced PTI table
... ocean_buoys = DataFrame("ocean_buoys")
>>> # Check DataFrame columns and let's peek at the data
... ocean_buoys.columns
['buoyid', 'TD_TIMECODE', 'temperature', 'salinity']
>>> ocean_buoys.head()
TD_TIMECODE temperature salinity
buoyid
0 2014-01-06 08:10:00.000000 100.0 55
0 2014-01-06 08:08:59.999999 NaN 55
1 2014-01-06 09:01:25.122200 77.0 55
1 2014-01-06 09:03:25.122200 79.0 55
1 2014-01-06 09:01:25.122200 70.0 55
1 2014-01-06 09:02:25.122200 71.0 55
1 2014-01-06 09:03:25.122200 72.0 55
0 2014-01-06 08:09:59.999999 99.0 55
0 2014-01-06 08:00:00.000000 10.0 55
0 2014-01-06 08:10:00.000000 10.0 55
#
# Time Series Aggregate Example 1: Executing kurtosis() function on DataFrame created on
# non-sequenced PTI table. We will consider all rows for the
# columns while calculating the kurtosis values.
#
# To use kurtosis() as Time Series Aggregate we must run groupby_time() first, followed by kurtosis().
>>> ocean_buoys_grpby1 = ocean_buoys.groupby_time(timebucket_duration="2cy",
... value_expression="buoyid", fill="NULLS")
>>> ocean_buoys_grpby1.kurtosis().sort(["TIMECODE_RANGE", "buoyid"])
TIMECODE_RANGE GROUP BY TIME(CAL_YEARS(2)) buoyid kurtosis_salinity kurtosis_temperature
0 ('2014-01-01 00:00:00.000000-00:00', '2016-01-... 2 0 None -5.998128
1 ('2014-01-01 00:00:00.000000-00:00', '2016-01-... 2 1 None -2.758377
2 ('2014-01-01 00:00:00.000000-00:00', '2016-01-... 2 2 None NaN
3 ('2014-01-01 00:00:00.000000-00:00', '2016-01-... 2 44 None -2.195395
>>>
#
# Time Series Aggregate Example 2: Executing kurtosis() function on DataFrame created on
# non-sequenced PTI table. We will consider DISTINCT values for the
# columns while calculating the kurtosis value.
#
# To use kurtosis() as Time Series Aggregate we must run groupby_time() first, followed by kurtosis().
>>> ocean_buoys_grpby1 = ocean_buoys.groupby_time(timebucket_duration="2cy",
... value_expression="buoyid", fill="NULLS")
>>> ocean_buoys_grpby1.kurtosis(distinct = True).sort(["TIMECODE_RANGE", "buoyid"])
TIMECODE_RANGE GROUP BY TIME(CAL_YEARS(2)) buoyid kurtosis_salinity kurtosis_temperature
0 ('2014-01-01 00:00:00.000000-00:00', '2016-01-... 2 0 None NaN
1 ('2014-01-01 00:00:00.000000-00:00', '2016-01-... 2 1 None -2.758377
2 ('2014-01-01 00:00:00.000000-00:00', '2016-01-... 2 2 None NaN
3 ('2014-01-01 00:00:00.000000-00:00', '2016-01-... 2 44 None 4.128426
>>>