Teradata Package for Python Function Reference | 20.00 - loc - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.
Teradata® Package for Python Function Reference - 20.00
- Deployment
- VantageCloud
- VantageCore
- Edition
- Enterprise
- IntelliFlex
- VMware
- Product
- Teradata Package for Python
- Release Number
- 20.00.00.03
- Published
- December 2024
- ft:locale
- en-US
- ft:lastEdition
- 2024-12-19
- dita:id
- TeradataPython_FxRef_Enterprise_2000
- Product Category
- Teradata Vantage
- teradataml.dataframe.dataframe.DataFrame.loc
- Access a group of rows and columns by label(s) or a boolean array.
VALID INPUTS:
- A single label, e.g. ``5`` or ``'a'``, (note that ``5`` is
interpreted as a label of the index, it is not interpreted as an
integer position along the index).
- A list or array of column or index labels, e.g. ``['a', 'b', 'c']``.
- A slice object with labels, e.g. ``'a':'f'``.
Note that unlike the usual python slices where the stop index is not included, both the
start and the stop are included
- A conditional expression for row access.
- A boolean array of the same length as the column axis for column access.
RETURNS:
teradataml DataFrame
RAISE:
TeradataMlException
EXAMPLES
--------
>>> load_example_data("dataframe","sales")
>>> df = DataFrame('sales')
>>> df
Feb Jan Mar Apr datetime
accounts
Blue Inc 90.0 50 95 101 04/01/2017
Alpha Co 210.0 200 215 250 04/01/2017
Jones LLC 200.0 150 140 180 04/01/2017
Yellow Inc 90.0 None None None 04/01/2017
Orange Inc 210.0 None None 250 04/01/2017
Red Inc 200.0 150 140 None 04/01/2017
# Retrieve row using a single label.
>>> df.loc['Blue Inc']
Feb Jan Mar Apr datetime
accounts
Blue Inc 90.0 50 95 101 04/01/2017
# List of labels. Note using ``[[]]``
>>> df.loc[['Blue Inc', 'Jones LLC']]
Feb Jan Mar Apr datetime
accounts
Blue Inc 90.0 50 95 101 04/01/2017
Jones LLC 200.0 150 140 180 04/01/2017
# Single label for row and column (index)
>>> df.loc['Yellow Inc', 'accounts']
Empty DataFrame
Columns: []
Index: [Yellow Inc]
# Single label for row and column
>>> df.loc['Yellow Inc', 'Feb']
Feb
0 90.0
# Single label for row and column access using a tuple
>>> df.loc[('Yellow Inc', 'Feb')]
Feb
0 90.0
# Slice with labels for row and single label for column. As mentioned
# above, note that both the start and stop of the slice are included.
>>> df.loc['Jones LLC':'Red Inc', 'accounts']
Empty DataFrame
Columns: []
Index: [Orange Inc, Jones LLC, Red Inc]
# Slice with labels for row and single label for column. As mentioned
# above, note that both the start and stop of the slice are included.
>>> df.loc['Jones LLC':'Red Inc', 'Jan']
Jan
0 None
1 150
2 150
# Slice with labels for row and labels for column. As mentioned
# above, note that both the start and stop of the slice are included.
>>> df.loc['Jones LLC':'Red Inc', 'accounts':'Apr']
Mar Jan Feb Apr
accounts
Orange Inc None None 210.0 250
Red Inc 140 150 200.0 None
Jones LLC 140 150 200.0 180
# Empty slice for row and labels for column.
>>> df.loc[:, :]
Feb Jan Mar datetime Apr
accounts
Jones LLC 200.0 150 140 04/01/2017 180
Blue Inc 90.0 50 95 04/01/2017 101
Yellow Inc 90.0 None None 04/01/2017 None
Orange Inc 210.0 None None 04/01/2017 250
Alpha Co 210.0 200 215 04/01/2017 250
Red Inc 200.0 150 140 04/01/2017 None
# Conditional expression
>>> df.loc[df['Feb'] > 90]
Feb Jan Mar Apr datetime
accounts
Jones LLC 200.0 150 140 180 04/01/2017
Red Inc 200.0 150 140 None 04/01/2017
Alpha Co 210.0 200 215 250 04/01/2017
Orange Inc 210.0 None None 250 04/01/2017
# Conditional expression with column labels specified
>>> df.loc[df['Feb'] > 90, ['accounts', 'Jan']]
Jan
accounts
Jones LLC 150
Red Inc 150
Alpha Co 200
Orange Inc None
# Conditional expression with multiple column labels specified
>>> df.loc[df['accounts'] == 'Jones LLC', ['accounts', 'Jan', 'Feb']]
Jan Feb
accounts
Jones LLC 150 200.0
# Conditional expression and slice with column labels specified
>>> df.loc[df['accounts'] == 'Jones LLC', 'accounts':'Mar']
Mar Jan Feb
accounts
Jones LLC 140 150 200.0
# Conditional expression and boolean array for column access
>>> df.loc[df['Feb'] > 90, [True, True, False, False, True, True]]
Feb Apr datetime
accounts
Alpha Co 210.0 250 04/01/2017
Jones LLC 200.0 180 04/01/2017
Red Inc 200.0 None 04/01/2017
Orange Inc 210.0 250 04/01/2017
>>>