Teradata Package for Python Function Reference | 20.00 - covar_samp - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.
Teradata® Package for Python Function Reference - 20.00
- Deployment
- VantageCloud
- VantageCore
- Edition
- Enterprise
- IntelliFlex
- VMware
- Product
- Teradata Package for Python
- Release Number
- 20.00.00.03
- Published
- December 2024
- ft:locale
- en-US
- ft:lastEdition
- 2024-12-19
- dita:id
- TeradataPython_FxRef_Enterprise_2000
- Product Category
- Teradata Vantage
- teradataml.dataframe.sql.DataFrameColumn.covar_samp = covar_samp(expression)
- DESCRIPTION:
Function returns the sample covariance of its arguments for all non-null
data point pairs. Covariance measures whether or not two random variables
vary in the same way. It is the average of the products of deviations for
each non-null data point pair.
Notes:
1. When there are no non-null data point pairs in the data used for
the computation, the function returns None.
2. High covariance does not imply a causal relationship between
the variables.
PARAMETERS:
expression:
Required Argument.
Specifies a ColumnExpression of a numeric column or name of the column
or a numeric literal to be paired with another variable to determine
their sample covariance.
Types: ColumnExpression OR int OR float OR str
RETURNS:
ColumnExpression, also known as, teradataml DataFrameColumn.
NOTES:
* One must use DataFrame.assign() when using the aggregate functions on
ColumnExpression, also known as, teradataml DataFrameColumn.
* One should always use "drop_columns=True" in DataFrame.assign(), while
running the aggregate operation on teradataml DataFrame.
* "drop_columns" argument in DataFrame.assign() is ignored, when aggregate
function is operated on DataFrame.groupby().
RAISES:
RuntimeError - If none of the columns support the aggregate operation.
EXAMPLES:
# Load the data to run the example.
>>> load_example_data("dataframe", "admissions_train")
>>>
# Create a DataFrame on 'admissions_train' table.
>>> admissions_train = DataFrame("admissions_train")
>>> admissions_train
masters gpa stats programming admitted
id
22 yes 3.46 Novice Beginner 0
36 no 3.00 Advanced Novice 0
15 yes 4.00 Advanced Advanced 1
38 yes 2.65 Advanced Beginner 1
5 no 3.44 Novice Novice 0
17 no 3.83 Advanced Advanced 1
34 yes 3.85 Advanced Beginner 0
13 no 4.00 Advanced Novice 1
26 yes 3.57 Advanced Advanced 1
19 yes 1.98 Advanced Advanced 0
>>>
# Example 1: Calculate sample covariance between 'admitted' and 'gpa'
# columns in teradataml DataFrame.
# Execute covar_samp() using teradataml DataFrameColumn to generate the ColumnExpression.
>>> covar_samp_column = admissions_train.admitted.covar_samp(admissions_train.gpa)
# Pass the generated ColumnExpression to DataFrame.assign(), to run and produce the result.
>>> df = admissions_train.assign(True, covar_samp_=covar_samp_column)
>>> df
covar_samp_
0 -0.005526
# Example 2:Calculate sample covariance between 'admitted' and 'gpa'
# columns in teradataml DataFrame, for each level of programming.
# Note:
# When assign() is run after DataFrame.groupby(), the function ignores
# the "drop_columns" argument.
# Execute covar_samp() using teradataml DataFrameColumn to generate the ColumnExpression.
>>> covar_samp_column = admissions_train.admitted.covar_samp(admissions_train.gpa)
# Pass the generated ColumnExpression to DataFrame.assign(), to run and produce the result.
>>> df=admissions_train.groupby("programming").assign(covar_samp_=covar_samp_column)
>>> df
programming covar_samp_
0 Advanced 0.097125
1 Novice -0.034636
2 Beginner -0.075000
>>>