Teradata Package for Python Function Reference | 20.00 - mean - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.
Teradata® Package for Python Function Reference - 20.00
- Deployment
- VantageCloud
- VantageCore
- Edition
- Enterprise
- IntelliFlex
- VMware
- Product
- Teradata Package for Python
- Release Number
- 20.00.00.03
- Published
- December 2024
- ft:locale
- en-US
- ft:lastEdition
- 2024-12-19
- dita:id
- TeradataPython_FxRef_Enterprise_2000
- lifecycle
- latest
- Product Category
- Teradata Vantage
- teradataml.dataframe.sql.DataFrameColumn.mean = mean(self, distinct=False, **kwargs)
- DESCRIPTION:
Function to get the average value for a column.
PARAMETERS:
distinct:
Optional Argument.
Specifies a flag that decides whether to consider duplicate values in
a column or not.
Default Values: False
Types: bool
kwargs:
Specifies optional keyword arguments.
RETURNS:
ColumnExpression, also known as, teradataml DataFrameColumn.
NOTES:
* One must use DataFrame.assign() when using the aggregate functions on
ColumnExpression, also known as, teradataml DataFrameColumn.
* One should always use "drop_columns=True" in DataFrame.assign(), while
running the aggregate operation on teradataml DataFrame.
* "drop_columns" argument in DataFrame.assign() is ignored, when aggregate
function is operated on DataFrame.groupby().
RAISES:
RuntimeError - If column does not support the aggregate operation.
EXAMPLES:
# Load the data to run the example.
>>> load_example_data("dataframe", "admissions_train")
>>>
# Create a DataFrame on 'admissions_train' table.
>>> admissions_train = DataFrame("admissions_train")
>>> admissions_train
masters gpa stats programming admitted
id
22 yes 3.46 Novice Beginner 0
36 no 3.00 Advanced Novice 0
15 yes 4.00 Advanced Advanced 1
38 yes 2.65 Advanced Beginner 1
5 no 3.44 Novice Novice 0
17 no 3.83 Advanced Advanced 1
34 yes 3.85 Advanced Beginner 0
13 no 4.00 Advanced Novice 1
26 yes 3.57 Advanced Advanced 1
19 yes 1.98 Advanced Advanced 0
>>>
# Example 1: Get the mean value of 'gpa' column.
# Execute mean() function using teradataml DataFrameColumn to generate the ColumnExpression.
>>> mean_column = admissions_train.gpa.mean()
# Pass the generated ColumnExpression to DataFrame.assign(), to run and produce the result.
>>> df = admissions_train.assign(True, mean_=mean_column)
>>> df
mean_
0 3.54175
>>>
# Example 2: Get the mean of the distinct values in 'gpa' column
# for each level of programming.
# Note:
# When assign() is run after DataFrame.groupby(), the function ignores
# the "drop_columns" argument.
# Execute mean() function using teradataml DataFrameColumn to generate the ColumnExpression.
>>> mean_column = admissions_train.gpa.mean(distinct=True)
# Pass the generated ColumnExpression to DataFrame.assign(), to run and produce the result.
>>> df=admissions_train.groupby("programming").assign(mean_=mean_column)
>>> df
programming mean_
0 Beginner 3.651818
1 Advanced 3.592667
2 Novice 3.294545
>>>