Teradata Package for Python Function Reference | 20.00 - add - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.
Teradata® Package for Python Function Reference - 20.00
- Deployment
- VantageCloud
- VantageCore
- Edition
- Enterprise
- IntelliFlex
- VMware
- Product
- Teradata Package for Python
- Release Number
- 20.00.00.03
- Published
- December 2024
- ft:locale
- en-US
- ft:lastEdition
- 2024-12-19
- dita:id
- TeradataPython_FxRef_Enterprise_2000
- lifecycle
- latest
- Product Category
- Teradata Vantage
- teradataml.dataframe.sql.DataFrameColumn.add = add(self, other)
- Compute the addition between two ColumnExpressions.
PARAMETERS:
other:
Required Argument.
Specifies Python literal or another ColumnExpression.
Types: ColumnExpression, Python literal
RETURNS:
ColumnExpression
EXAMPLES:
>>> load_example_data("burst", "finance_data")
>>> df = DataFrame("finance_data")
>>> df
start_time_column end_time_column expenditure income investment
id
1 67/06/30 07/07/10 415.0 451.0 180.0
4 67/06/30 07/07/10 448.0 493.0 192.0
2 67/06/30 07/07/10 421.0 465.0 179.0
3 67/06/30 07/07/10 434.0 485.0 185.0
5 67/06/30 07/07/10 459.0 509.0 211.0
# Example 1: Add 100 to the expenditure amount and assign the final amount
# to new column 'total_expenditure'.
>>> df.assign(total_expenditure=df.expenditure.add(100))
start_time_column end_time_column expenditure income investment total_expenditure
id
3 67/06/30 07/07/10 434.0 485.0 185.0 534.0
2 67/06/30 07/07/10 421.0 465.0 179.0 521.0
1 67/06/30 07/07/10 415.0 451.0 180.0 515.0
5 67/06/30 07/07/10 459.0 509.0 211.0 559.0
4 67/06/30 07/07/10 448.0 493.0 192.0 548.0
# Example 2: Filter the rows where the income left after the investment is more than 300.
>>> df[df.income.sub(df.investment) > 300]
start_time_column end_time_column expenditure income investment
id
4 67/06/30 07/07/10 448.0 493.0 192.0