Teradata Package for Python Function Reference | 20.00 - add - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.

Teradata® Package for Python Function Reference - 20.00

Deployment
VantageCloud
VantageCore
Edition
Enterprise
IntelliFlex
VMware
Product
Teradata Package for Python
Release Number
20.00.00.03
Published
December 2024
ft:locale
en-US
ft:lastEdition
2024-12-19
dita:id
TeradataPython_FxRef_Enterprise_2000
lifecycle
latest
Product Category
Teradata Vantage
teradataml.dataframe.sql.DataFrameColumn.add = add(self, other)
Compute the addition between two ColumnExpressions.
 
PARAMETERS:
    other:
        Required Argument.
        Specifies Python literal or another ColumnExpression.
        Types: ColumnExpression, Python literal
 
RETURNS:
    ColumnExpression
 
EXAMPLES:
    >>> load_example_data("burst", "finance_data")
    >>> df = DataFrame("finance_data")
    >>> df
       start_time_column end_time_column  expenditure  income  investment
    id
    1           67/06/30        07/07/10        415.0   451.0       180.0
    4           67/06/30        07/07/10        448.0   493.0       192.0
    2           67/06/30        07/07/10        421.0   465.0       179.0
    3           67/06/30        07/07/10        434.0   485.0       185.0
    5           67/06/30        07/07/10        459.0   509.0       211.0
 
    # Example 1: Add 100 to the expenditure amount and assign the final amount
    #            to new column 'total_expenditure'.
    >>> df.assign(total_expenditure=df.expenditure.add(100))
       start_time_column end_time_column  expenditure  income  investment  total_expenditure
    id
    3           67/06/30        07/07/10        434.0   485.0       185.0              534.0
    2           67/06/30        07/07/10        421.0   465.0       179.0              521.0
    1           67/06/30        07/07/10        415.0   451.0       180.0              515.0
    5           67/06/30        07/07/10        459.0   509.0       211.0              559.0
    4           67/06/30        07/07/10        448.0   493.0       192.0              548.0
 
    # Example 2: Filter the rows where the income left after the investment is more than 300.
    >>> df[df.income.sub(df.investment) > 300]
       start_time_column end_time_column  expenditure  income  investment
    id
    4           67/06/30        07/07/10        448.0   493.0       192.0