Teradata Package for Python Function Reference | 20.00 - next_day - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.
Teradata® Package for Python Function Reference - 20.00
- Deployment
- VantageCloud
- VantageCore
- Edition
- Enterprise
- IntelliFlex
- VMware
- Product
- Teradata Package for Python
- Release Number
- 20.00.00.02
- Published
- September 2024
- Language
- English (United States)
- Last Update
- 2024-10-17
- dita:id
- TeradataPython_FxRef_Enterprise_2000
- Product Category
- Teradata Vantage
- teradataml.dataframe.sql.DataFrameColumn.next_day = next_day(self, day_value)
- DESCRIPTION:
Function returns the date of the first weekday specified as 'day_value' that is later than the specified date or
timestamp value in a column as a literal.
PARAMETERS:
day_value:
Optional Argument.
Specifies the day of the week.
day_value can be any day of the week or its 3-character abbreviation.
Permitted Values:
'SUNDAY' or 'SUN'
'MONDAY' or 'MON'
'TUESDAY' or 'TUE'
'WEDNESDAY' or 'WED'
'THURSDAY' or 'THU'
'FRIDAY' or 'FRI'
'SATURDAY' or 'SAT'
Types: str
RAISES:
TypeError, ValueError, TeradataMlException
RETURNS:
DataFrameColumn
EXAMPLES:
# Load the data to run the example.
>>> load_example_data("dataframe", ["sales"])
# Create a DataFrame on 'sales' table.
>>> df = DataFrame.from_table('sales')
# Preparing the data.
>>> df_sales = df.assign(dates = case([(df.accounts == 'Alpha Co', df.datetime + random.randrange(20,1000,3)),
(df.accounts == 'Blue Inc', df.datetime + random.randrange(20,1000,3)),
(df.accounts == 'Jones LLC', df.datetime + random.randrange(20,1000,3)),
(df.accounts == 'Orange Inc', df.datetime + random.randrange(20,1000,3)),
(df.accounts == 'Yellow Inc', df.datetime + random.randrange(20,1000,3)),
(df.accounts == 'Red Inc', df.datetime + random.randrange(20,1000,3))]))
# Example 1: Returns the date of the first weekday specified as 'day_value' that is later than the specified
# date or timestamp value in a column as a literal.
>>> df = df_sales.assign(res = df_sales.dates.next_day("SUNDAY"))
>>> print(df)
Feb Jan Mar Apr datetime dates res
accounts
Alpha Co 210.0 200.0 215.0 250.0 04/01/2017 18/03/20 18/03/25
Blue Inc 90.0 50.0 95.0 101.0 04/01/2017 19/02/25 19/03/03
Jones LLC 200.0 150.0 140.0 180.0 04/01/2017 17/04/27 17/04/30
Orange Inc 210.0 NaN NaN 250.0 04/01/2017 19/05/29 19/06/02
Yellow Inc 90.0 NaN NaN NaN 04/01/2017 18/10/22 18/10/28
Red Inc 200.0 150.0 140.0 NaN 04/01/2017 17/08/07 17/08/13