Teradata Package for Python Function Reference | 20.00 - contains - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.
Teradata® Package for Python Function Reference - 20.00
- Deployment
- VantageCloud
- VantageCore
- Edition
- Enterprise
- IntelliFlex
- VMware
- Product
- Teradata Package for Python
- Release Number
- 20.00.00.03
- Published
- December 2024
- ft:locale
- en-US
- ft:lastEdition
- 2024-12-19
- dita:id
- TeradataPython_FxRef_Enterprise_2000
- lifecycle
- latest
- Product Category
- Teradata Vantage
- teradataml.dataframe.sql.DataFrameColumn.contains = contains(self, pattern, case=True, na=None, **kw)
- Search the pattern or substring in the column.
PARAMETERS:
pattern:
Required Argument.
Specifies a literal value or ColumnExpression. Use ColumnExpression
when comparison is done based on values inside ColumnExpression or
based on a ColumnExpression function. Else, use literal value.
Note:
Argument supports regular expressions too.
Types: str OR ColumnExpression
case:
Optional Argument.
Specifies the case-sentivity match.
When True, case-sensitive matches, otherwise case-sensitive does not matches.
Default value: True
Types: bool
na:
Optional Argument.
Specifies an optional fill value for NULL values in the column
Types: bool, str, or numeric python literal.
**kw:
Optional Argument.
Specifies optional parameters to pass to regexp_substr
match_arg:
A string of characters to use for the match_arg parameter for REGEXP_SUBSTR
See the Reference for more information about the match_arg parameter.
Note:
Specifying match_arg overrides the case parameter
RETURNS:
A numeric Series of values where:
- Nulls are replaced by the fill parameter
- A 1 if the value matches the pattern or else 0
The type of the series is upcasted to support the fill value, if specified.
EXAMPLES:
>>> load_example_data("sentimentextractor", "additional_table")
>>> df = DataFrame("additional_table")
>>> df
polarity_strength
sentiment_word
'integral' 1
'eagerness' 1
'fearfully' -1
irregular' -1
'upgradable' 1
'rupture' -1
'imperfect' -1
'rejoicing' 1
'comforting' 1
'obstinate' -1
>>> sentiment_word = df["sentiment_word"]
# Example 1: Check if 'in' string is present or not in values in
# column 'sentiment_word'.
>>> df.assign(drop_columns = True,
Name = sentiment_word,
has_in = sentiment_word.str.contains('in'))
Name has_in
0 'integral' 1
1 'eagerness' 0
2 'fearfully' 0
3 irregular' 0
4 'upgradable' 0
5 'rupture' 0
6 'imperfect' 0
7 'rejoicing' 1
8 'comforting' 1
9 'obstinate' 1
# Example 2: Check if accounts column contains 'Er' string by ignoring
# case sensitivity and specifying a literal for null values.
>>> df.assign(drop_columns = True,
Name = sentiment_word,
has_er = sentiment_word.str.contains('ER', case=False, na = 'no value'))
Name has_er
0 'integral' 0
1 'eagerness' 1
2 'fearfully' 0
3 irregular' 0
4 'upgradable' 0
5 'rupture' 0
6 'imperfect' 1
7 'rejoicing' 0
8 'comforting' 0
9 'obstinate' 0
>>> load_example_data("dataframe", "sales")
>>> df = DataFrame("sales")
>>> df
Feb Jan Mar Apr datetime
accounts
Orange Inc 210.0 NaN NaN 250.0 04/01/2017
Blue Inc 90.0 50.0 95.0 101.0 04/01/2017
Yellow Inc 90.0 NaN NaN NaN 04/01/2017
Red Inc 200.0 150.0 140.0 NaN 04/01/2017
Jones LLC 200.0 150.0 140.0 180.0 04/01/2017
Alpha Co 210.0 200.0 215.0 250.0 04/01/2017
# Example 3: Get the all the accounts where accounts has 'Inc' string.
>>> df[accounts.str.contains('Inc') == True]
Feb Jan Mar Apr datetime
accounts
Orange Inc 210.0 NaN NaN 250.0 04/01/2017
Red Inc 200.0 150.0 140.0 NaN 04/01/2017
Yellow Inc 90.0 NaN NaN NaN 04/01/2017
Blue Inc 90.0 50.0 95.0 101.0 04/01/2017
# Example 4: Get all the accounts where accounts does not
# have 'Inc' string.
>>> df[accounts.str.contains('Inc') == False]
Feb Jan Mar Apr datetime
accounts
Jones LLC 200.0 150 140 180 04/01/2017
Alpha Co 210.0 200 215 250 04/01/2017
# Example 5: Get all the accounts where accounts has 'Inc' by
# specifying numeric literals for True (1).
>>> df[accounts.str.contains('Inc') == 1]
Feb Jan Mar Apr datetime
accounts
Orange Inc 210.0 NaN NaN 250.0 04/01/2017
Red Inc 200.0 150.0 140.0 NaN 04/01/2017
Yellow Inc 90.0 NaN NaN NaN 04/01/2017
Blue Inc 90.0 50.0 95.0 101.0 04/01/2017
#Example 6: Get all the accounts where accounts has 'Inc' by
# specifying numeric literals for False (0).
>>> df[accounts.str.contains('Inc') == 0]
Feb Jan Mar Apr datetime
accounts
Jones LLC 200.0 150 140 180 04/01/2017
Alpha Co 210.0 200 215 250 04/01/2017
>>> load_example_data("ntree", "employee_table")
>>> df = DataFrame("employee_table")
>>> df
emp_name mgr_id mgr_name
emp_id
200 Pat 100.0 Don
300 Donna 100.0 Don
400 Kim 200.0 Pat
500 Fred 400.0 Kim
100 Don NaN NA
# Example 7: Get all the employees whose name has managers name.
>>> df[df.emp_name.str.contains(df.mgr_name) == True]
>>> df
emp_name mgr_id mgr_name
emp_id
300 Donna 100 Don