Teradata Package for Python Function Reference | 20.00 - replace - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.
Teradata® Package for Python Function Reference - 20.00
- Deployment
- VantageCloud
- VantageCore
- Edition
- Enterprise
- IntelliFlex
- VMware
- Product
- Teradata Package for Python
- Release Number
- 20.00.00.03
- Published
- December 2024
- ft:locale
- en-US
- ft:lastEdition
- 2024-12-19
- dita:id
- TeradataPython_FxRef_Enterprise_2000
- lifecycle
- latest
- Product Category
- Teradata Vantage
- teradataml.dataframe.sql.DataFrameColumn.replace = replace(search_string, replace_string)
- DESCRIPTION:
Function replaces every occurrence of "search_string" in the string value in column
with the "replace_string". Use this function either to replace or remove
portions of a string.
ALTERNATE NAME:
oreplace
PARAMETERS:
search_string:
Required Argument.
Specifies a ColumnExpression of a string column or a string literal
that the function searches for string values in column.
If argument is null, then result is null.
Format of a ColumnExpression of a string column: '<dataframe>.<dataframe_column>'.
Supported column types: CHAR, VARCHAR, or CLOB
Types: ColumnExpression, str
replace_string:
Required Argument.
Specifies a ColumnExpression of a string column or a string literal
that replaces the characters specified by "search_string".
If argument is NULL or is an empty string, or is omitted, all
occurrences of "search_string" are removed from the string values in column.
Format of a ColumnExpression of a string column: '<dataframe>.<dataframe_column>'.
Supported column types: CHAR, VARCHAR, or CLOB
Types: ColumnExpression, str
RAISES:
TypeError, ValueError, TeradataMlException
RETURNS:
DataFrameColumn
EXAMPLES:
# Load the data to run the example.
>>> load_example_data("dataframe", "admissions_train")
# Create a DataFrame on 'admissions_train' table.
>>> df = DataFrame("admissions_train").iloc[:4]
>>> print(df)
masters gpa stats programming admitted
id
3 no 3.70 Novice Beginner 1
4 yes 3.50 Beginner Novice 1
2 yes 3.76 Beginner Beginner 0
1 yes 3.95 Beginner Beginner 0
# Example 1: Removes occurrence of 'ner' in "stats" column and pass it as input
# to DataFrame.assign().
>>> res = df.assign(col = df.stats.replace("ner"))
>>> print(res)
masters gpa stats programming admitted col
id
3 no 3.70 Novice Beginner 1 Novice
4 yes 3.50 Beginner Novice 1 Begin
2 yes 3.76 Beginner Beginner 0 Begin
1 yes 3.95 Beginner Beginner 0 Begin
# Example 2: Executed replace() function on "stats" column and filtered computed
# values which are equal to 'Begin'.
>>> print(df[df.stats.replace("ner") == "Begin"])
masters gpa stats programming admitted
id
4 yes 3.50 Beginner Novice 1
2 yes 3.76 Beginner Beginner 0
1 yes 3.95 Beginner Beginner 0