Teradata Package for Python Function Reference | 20.00 - deploy: Externally Trained Model - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.

Teradata® Package for Python Function Reference - 20.00

Deployment
VantageCloud
VantageCore
Edition
Enterprise
IntelliFlex
VMware
Product
Teradata Package for Python
Release Number
20.00
Published
March 2024
Language
English (United States)
Last Update
2024-04-10
dita:id
TeradataPython_FxRef_Enterprise_2000
Product Category
Teradata Vantage
teradataml.opensource.sklearn._class._OpenSource.deploy = deploy(self, model_name, model, replace_if_exists=False)
DESCRIPTION:
    Deploys the model to Vantage.
 
PARAMETERS:
    model_name:
        Required Argument.
        Specifies the unique name of the model to be deployed.
        Types: str
 
    model:
        Required Argument.
        Specifies the teradataml supported opensource model object that is to be deployed.
        Currently supported models are:
            - sklearn
        Types: object
 
    replace_if_exists:
        Optional Argument.
        Specifies whether to replace the model if a model with the same name already
        exists in Vantage. If this argument is set to False and a model with the same
        name already exists, then the function raises an exception.
        Default Value: False
        Types: bool
 
RETURNS:
    The opensource object wrapper.
 
RAISES:
    TeradataMLException if model with "model_name" already exists and the argument
    "replace_if_exists" is set to False.
 
EXAMPLES:
    >>> from teradataml import td_sklearn
    >>> from sklearn.linear_model import LinearRegression
    >>> model = LinearRegression(normalize=True)
 
    # Example 1: Deploy the model to Vantage.
    >>> lin_reg = td_sklearn.deploy("linreg_model_ver_1", model)
    Model is saved.
    >>> lin_reg
    LinearRegression(normalize=True)
 
    # Example 2: Deploy the model to Vantage with the name same as that of model that
    #            already existed in Vantage.
    >>> lin_reg = td_sklearn.deploy("linreg_model_ver_1", model, replace_if_exists=True)
    Model is deleted.
    Model is saved.
    >>> lin_reg
    LinearRegression(normalize=True)