Teradata Package for Python Function Reference | 20.00 - archive_data_source - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.
Teradata® Package for Python Function Reference - 20.00
- Deployment
- VantageCloud
- VantageCore
- Edition
- Enterprise
- IntelliFlex
- VMware
- Product
- Teradata Package for Python
- Release Number
- 20.00.00.03
- Published
- December 2024
- ft:locale
- en-US
- ft:lastEdition
- 2024-12-19
- dita:id
- TeradataPython_FxRef_Enterprise_2000
- lifecycle
- latest
- Product Category
- Teradata Vantage
- teradataml.store.feature_store.feature_store.FeatureStore.archive_data_source = archive_data_source(self, data_source)
- DESCRIPTION:
Archives DataSource from repository. Note that archived DataSource
is not available for any further processing. Archived DataSource can be
viewed using "list_archived_data_sources()" method.
PARAMETERS:
data_source:
Required Argument.
Specifies either the name of DataSource or Object of DataSource
to archive from repository.
Types: str OR DataSource
RETURNS:
bool
RAISES:
TeradataMLException, TypeError, ValueError
EXAMPLES:
>>> from teradataml import DataSource, FeatureStore, load_example_data
# Create a DataSource using SELECT statement.
>>> ds = DataSource(name="sales_data", source="select * from sales")
# Create FeatureStore for repo 'vfs_v1'.
>>> fs = FeatureStore("vfs_v1")
# Apply DataSource to FeatureStore.
>>> fs.apply(ds)
True
# List the available DataSources.
>>> fs.list_data_sources()
description timestamp_col_name source
name
sales_data None None select * from sales
# Archive DataSource with name "sales_data".
>>> fs.archive_data_source("sales_data")
DataSource 'sales_data' is archived.
True
>>>
# List the available DataSources after archive.
>>> fs.list_data_sources()
Empty DataFrame
Columns: [description, timestamp_col_name, source]
Index: []