Teradata Package for Python Function Reference | 20.00 - archive_data_source - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.

Teradata® Package for Python Function Reference - 20.00

Deployment
VantageCloud
VantageCore
Edition
Enterprise
IntelliFlex
VMware
Product
Teradata Package for Python
Release Number
20.00.00.03
Published
December 2024
ft:locale
en-US
ft:lastEdition
2024-12-19
dita:id
TeradataPython_FxRef_Enterprise_2000
lifecycle
latest
Product Category
Teradata Vantage
teradataml.store.feature_store.feature_store.FeatureStore.archive_data_source = archive_data_source(self, data_source)
DESCRIPTION:
    Archives DataSource from repository. Note that archived DataSource
    is not available for any further processing. Archived DataSource can be 
    viewed using "list_archived_data_sources()" method.
 
PARAMETERS:
    data_source:
        Required Argument.
        Specifies either the name of DataSource or Object of DataSource
        to archive from repository.
        Types: str OR DataSource
 
RETURNS:
    bool
 
RAISES:
    TeradataMLException, TypeError, ValueError
 
EXAMPLES:
    >>> from teradataml import DataSource, FeatureStore, load_example_data
    # Create a DataSource using SELECT statement.
    >>> ds = DataSource(name="sales_data", source="select * from sales")
    # Create FeatureStore for repo 'vfs_v1'.
    >>> fs = FeatureStore("vfs_v1")
    # Apply DataSource to FeatureStore.
    >>> fs.apply(ds)
    True
    # List the available DataSources.
    >>> fs.list_data_sources()
               description timestamp_col_name               source
    name
    sales_data        None               None  select * from sales
 
    # Archive DataSource with name "sales_data".
    >>> fs.archive_data_source("sales_data")
    DataSource 'sales_data' is archived.
    True
    >>>
    # List the available DataSources after archive.
    >>> fs.list_data_sources()
    Empty DataFrame
    Columns: [description, timestamp_col_name, source]
    Index: []