Teradata Package for Python Function Reference | 20.00 - get_dataset - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.

Teradata® Package for Python Function Reference - 20.00

Deployment
VantageCloud
VantageCore
Edition
Enterprise
IntelliFlex
VMware
Product
Teradata Package for Python
Release Number
20.00.00.03
Published
December 2024
ft:locale
en-US
ft:lastEdition
2024-12-19
dita:id
TeradataPython_FxRef_Enterprise_2000
lifecycle
latest
Product Category
Teradata Vantage
teradataml.store.feature_store.feature_store.FeatureStore.get_dataset = get_dataset(self, group_name)
DESCRIPTION:
    Returns teradataml DataFrame based on "group_name".
 
PARAMETERS:
    group_name:
        Required Argument.
        Specifies the name of the feature group.
        Types: str
 
RETURNS:
    teradataml DataFrame.
 
RAISES:
    TeradataMLException
 
EXAMPLES:
    >>> from teradataml import DataFrame, FeatureStore, load_example_data
    # Load the sales data to Vantage.
    >>> load_example_data("dataframe", "sales")
    # Create DataFrame on sales data.
    >>> df = DataFrame("sales")
    >>> df
    >>> df
                  Feb    Jan    Mar    Apr    datetime
    accounts
    Orange Inc  210.0    NaN    NaN  250.0  04/01/2017
    Jones LLC   200.0  150.0  140.0  180.0  04/01/2017
    Blue Inc     90.0   50.0   95.0  101.0  04/01/2017
    Alpha Co    210.0  200.0  215.0  250.0  04/01/2017
    Yellow Inc   90.0    NaN    NaN    NaN  04/01/2017
    >>>
    # Create FeatureGroup with name 'sales' from DataFrame.
    >>> fg = FeatureGroup.from_DataFrame(
    ...    name="sales", df=df, entity_columns="accounts", timestamp_col_name="datetime")
    # Apply the FeatureGroup to FeatureStore.
    >>> fs = FeatureStore("vfs_v1")
    >>> fs.apply(fg)
    True
 
    # Get the DataSet for FeatureGroup 'sales'
    >>> df = fs.get_dataset('sales')
    >>> df
                  datetime    Jan    Feb    Apr    Mar
    accounts
    Orange Inc  04/01/2017    NaN  210.0  250.0    NaN
    Jones LLC   04/01/2017  150.0  200.0  180.0  140.0
    Blue Inc    04/01/2017   50.0   90.0  101.0   95.0
    Alpha Co    04/01/2017  200.0  210.0  250.0  215.0
    Yellow Inc  04/01/2017    NaN   90.0    NaN    NaN
    >>>