Teradata Package for Python Function Reference | 20.00 - TDSeries - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.
Teradata® Package for Python Function Reference - 20.00
- Deployment
- VantageCloud
- VantageCore
- Edition
- Enterprise
- IntelliFlex
- VMware
- Product
- Teradata Package for Python
- Release Number
- 20.00.00.03
- Published
- December 2024
- ft:locale
- en-US
- ft:lastEdition
- 2024-12-19
- dita:id
- TeradataPython_FxRef_Enterprise_2000
- lifecycle
- latest
- Product Category
- Teradata Vantage
- teradataml.dataframe.dataframe.TDSeries.__init__ = __init__(self, data, id, row_index, row_index_style='TIMECODE', id_sequence=None, payload_field=None, payload_content=None, layer=None, interval=None)
- DESCRIPTION:
1. Create a TDSeries object from a teradataml DataFrame
representing a SERIES in time series which is used
as input to Unbounded Array Framework, time series functions.
A series is a one-dimensional array. They are the basic input
of UAF functions.
A series is identified by its series ID, i.e., "id" argument,
and indexed by "row_index" argument.
Series is passed to and returned from UAF functions as wavelets.
Wavelets are collections of rows, grouped by one or more fields,
and ordered on the "row_index" argument.
2. Any operations like filter, select, sum, etc. over TDSeries
returns a teradataml DataFrame.
PARAMETERS:
data:
Required Argument.
Specifies the teradataml Dataframe.
Types: teradataml DataFrame
id:
Required Argument.
Specifies the name of the column in "data" containing the
identifier values.
Types: str or list of str
row_index:
Required Argument.
Specifies the name of the column in "data" containing the
row indexing values.
Types: str
row_index_style:
Optional Argument.
Specifies the style of row indexing.
Default Value: "TIMECODE"
Permitted Values: "TIMECODE", "SEQUENCE"
Types: str
id_sequence:
Optional Argument.
Specifies a sequence of series to plot.
Types: str or list of str
payload_field:
Optional Argument.
Specifies the names of the fields for payload.
Types: str or list of str
payload_content:
Optional Argument.
Specifies the payload content type.
Permitted Values: "REAL", "COMPLEX", "AMPL_PHASE",
"AMPL_PHASE_RADIANS", "AMPL_PHASE_DEGREES",
"MULTIVAR_REAL", "MULTIVAR_COMPLEX",
"MULTIVAR_ANYTYPE", "MULTIVAR_AMPL_PHASE",
"MULTIVAR_AMPL_PHASE_RADIANS ",
"MULTIVAR_AMPL_PHASE_DEGREES"
Types: str
layer:
Optional Argument.
Specifies the layer name of the ART table, if dataframe is
created on ART table.
Types: str
interval:
Optional Argument.
Specifies the indicator to divide a series into a collection of
intervals along its row-axis.
"interval" is categorised in to 4 types:
* Values represent time-duration
* Allowed Values:
* CAL_YEARS
* CAL_MONTHS
* CAL_DAYS
* WEEKS
* DAYS
* HOURS
* MINUTES
* SECONDS
* MILLISECONDS
* MICROSECONDS
* Values represent time-zero
* Allowed Values:
* DATE
* TIMESTAMP
* TIMESTAMP WITH TIME ZONE
* Values represent an integer or floating number
* Allowed Values: A positive integer or float,
range from 1 to 32767, inclusively.
* sequence-zero:
An expression which evaluates to an INTEGER or FLOAT.
Used when row_index_style is SEQUENCE.
Allowed Values:
Individual values or combined values from below:
* time-duration
* time-duration, time-zero
* integer
* float, integer
* sequence-zero
* float, sequence-zero
Types: str
RAISES:
None
RETURNS:
None
EXAMPLES:
# Example 1: Creating TDSeries object.
>>> from teradataml import create_context, load_example_data, DataFrame, TDSeries
>>> con = create_context(host = host, user=user, password=passw)
>>> load_example_data("dataframe", "admissions_train")
# Create a DataFrame to be passed as input to TDSeries.
>>> data = DataFrame("admissions_train")
# Create TDSeries object which can be used as input in UAF functions.
>>> result = TDSeries(data=data, id="admitted", row_index="admitted",
payload_field="abc", payload_content="REAL")
>>> result
masters gpa stats programming admitted
id
5 no 3.44 Novice Novice 0
34 yes 3.85 Advanced Beginner 0
13 no 4.00 Advanced Novice 1
40 yes 3.95 Novice Beginner 0
22 yes 3.46 Novice Beginner 0
19 yes 1.98 Advanced Advanced 0
36 no 3.00 Advanced Novice 0
15 yes 4.00 Advanced Advanced 1
7 yes 2.33 Novice Novice 1
17 no 3.83 Advanced Advanced 1