Teradata Package for Python Function Reference | 20.00 - mean - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.
Teradata® Package for Python Function Reference - 20.00
- Deployment
- VantageCloud
- VantageCore
- Edition
- Enterprise
- IntelliFlex
- VMware
- Product
- Teradata Package for Python
- Release Number
- 20.00.00.03
- Published
- December 2024
- ft:locale
- en-US
- ft:lastEdition
- 2024-12-19
- dita:id
- TeradataPython_FxRef_Enterprise_2000
- lifecycle
- latest
- Product Category
- Teradata Vantage
- teradataml.dataframe.window.mean = mean(distinct=False)
- DESCRIPTION:
Function returns the arithmetic average of all values in teradataml
DataFrame or ColumnExpression over the specified window.
PARAMETERS:
distinct:
Optional Argument.
Specifies a flag that decides whether to consider duplicate values
in a column or not.
Default Values: False
Types: bool
RETURNS:
* teradataml DataFrame - When aggregate is executed using window created
on teradataml DataFrame.
* ColumnExpression, also known as, teradataml DataFrameColumn - When aggregate is
executed using window created on ColumnExpression.
RAISES:
RuntimeError - If column does not support the aggregate operation.
ALTERNATE NAMES:
1. avg
2. ave
EXAMPLES:
# Load the data to run the example.
>>> load_example_data("dataframe", "admissions_train")
>>>
# Create a teradataml DataFrame on 'admissions_train' table.
>>> admissions_train = DataFrame("admissions_train")
>>> admissions_train
masters gpa stats programming admitted
id
22 yes 3.46 Novice Beginner 0
36 no 3.00 Advanced Novice 0
15 yes 4.00 Advanced Advanced 1
38 yes 2.65 Advanced Beginner 1
5 no 3.44 Novice Novice 0
17 no 3.83 Advanced Advanced 1
34 yes 3.85 Advanced Beginner 0
13 no 4.00 Advanced Novice 1
26 yes 3.57 Advanced Advanced 1
19 yes 1.98 Advanced Advanced 0
>>>
# Example 1: Calculate the average value for the 'gpa' column
# in a Rolling window, partitioned over 'programming'.
# Create a Rolling window on 'gpa'.
>>> window = admissions_train.gpa.window(partition_columns="programming",
... window_start_point=-2,
... window_end_point=0)
>>>
# Execute mean() on the Rolling window and attach it to the teradataml DataFrame.
# Note: DataFrame.assign() allows combining multiple window aggregate operations
# in one single call. In this example, we are executing count() along with
# max() window aggregate operations.
>>> df = admissions_train.assign(mean_gpa=window.mean(), max_gpa=window.max())
>>> df
masters gpa stats programming admitted max_gpa mean_gpa
id
2 yes 3.76 Beginner Beginner 0 3.95 3.453333
21 no 3.87 Novice Beginner 1 3.87 3.710000
40 yes 3.95 Novice Beginner 0 3.95 3.773333
22 yes 3.46 Novice Beginner 0 3.95 3.760000
35 no 3.68 Novice Beginner 1 3.75 3.630000
29 yes 4.00 Novice Beginner 0 4.00 3.810000
11 no 3.13 Advanced Advanced 1 3.13 3.130000
28 no 3.93 Advanced Advanced 1 3.93 3.530000
16 no 3.70 Advanced Advanced 1 3.93 3.586667
8 no 3.60 Beginner Advanced 1 3.93 3.743333
>>>
# Example 2: Calculate the average of all the valid columns in teradataml
DataFrame, in an Expanding window, partitioned over 'programming'.
# Create an Expanding window on teradataml DataFrame.
>>> window = admissions_train.window(partition_columns=admissions_train.programming,
... window_start_point=None,
... window_end_point=0)
>>>
# Execute mean() on the Expanding window.
>>> df = window.mean()
>>> df
masters gpa stats programming admitted admitted_mean gpa_mean id_mean
id
2 yes 3.76 Beginner Beginner 0 0.333333 3.840000 7.000000
40 yes 3.95 Novice Beginner 0 0.200000 3.864000 19.000000
7 yes 2.33 Novice Novice 1 0.333333 3.608333 17.000000
22 yes 3.46 Novice Beginner 0 0.285714 3.587143 17.714286
27 yes 3.96 Advanced Advanced 0 0.222222 3.646667 21.111111
4 yes 3.50 Beginner Novice 1 0.300000 3.632000 19.400000
3 no 3.70 Novice Beginner 1 1.000000 3.700000 3.000000
25 no 3.96 Advanced Advanced 1 1.000000 3.830000 14.000000
17 no 3.83 Advanced Advanced 1 1.000000 3.830000 15.000000
13 no 4.00 Advanced Novice 1 1.000000 3.872500 14.500000
>>>
# Example 3: Calculate the average of all the valid columns in teradataml DataFrame,
# which are grouped by 'masters' and 'gpa' in a Contracting window,
# partitioned over 'masters'.
# Perform group_by() operation on teradataml DataFrame.
>>> group_by_df = admissions_train.groupby(["masters", "gpa"])
# Create a Contracting window on teradataml DataFrameGroupBy object.
>>> window = group_by_df.window(partition_columns=group_by_df.masters,
... window_start_point=-5,
... window_end_point=None)
# Execute mean() on the Contracting window.
>>> window.mean()
masters gpa gpa_mean
0 yes 3.79 3.632500
1 yes 3.50 3.529000
2 yes 3.96 3.554545
3 yes 4.00 3.579167
4 yes 3.90 3.464286
5 yes 2.33 3.464000
6 no 3.52 3.265000
7 no 3.83 3.320000
8 no 3.82 3.405000
9 no 3.55 3.438889
>>>