DecisionTreePredict
Description
The DecisionTreePredict function applies a tree model to input data, to output predicted labels for each data point.
Usage
td_decision_tree_predict_mle_sqle (
object = NULL,
newdata = NULL,
attr.table.groupby.columns = NULL,
attr.table.pid.columns = NULL,
attr.table.val.column = NULL,
accumulate = NULL,
output.response.probdist = FALSE,
output.responses = NULL,
newdata.partition.column = NULL,
newdata.order.column = NULL,
object.order.column = NULL
)
## S3 method for class 'td_decision_tree_mle'
predict(
object = NULL,
newdata = NULL,
attr.table.groupby.columns = NULL,
attr.table.pid.columns = NULL,
attr.table.val.column = NULL,
accumulate = NULL,
output.response.probdist = FALSE,
output.responses = NULL,
newdata.partition.column = NULL,
newdata.order.column = NULL,
object.order.column = NULL)
Arguments
object |
Required Argument. |
object.order.column |
Optional Argument. |
newdata |
Required Argument. |
newdata.partition.column |
Required Argument. |
newdata.order.column |
Optional Argument. |
attr.table.groupby.columns |
Required Argument. |
attr.table.pid.columns |
Required Argument. |
attr.table.val.column |
Required Argument. |
accumulate |
Optional Argument. |
output.response.probdist |
Optional Argument. |
output.responses |
Optional Argument. Required if "output.response.probdist" is TRUE. |
Value
Function returns an object of class "td_decision_tree_predict_mle_sqle"
which is a named list containing object of class "tbl_teradata".
Named list member can be referenced directly with the "$" operator
using the name: result.
Examples
# Get the current context/connection.
con <- td_get_context()$connection
# Load example data.
loadExampleData("decisiontreepredict_example", "iris_attribute_test")
loadExampleData("decision_tree_example", "iris_attribute_train", "iris_response_train",
"iris_altinput")
# Create object(s) of class "tbl_teradata".
iris_attribute_train <- tbl(con, "iris_attribute_train")
iris_response_train <- tbl(con, "iris_response_train")
iris_attribute_test <- tbl(con, "iris_attribute_test")
# Example -
# First train the data, i.e. create a Model
decision_tree_out <- td_decision_tree_mle(attribute.name.columns = c("attribute"),
attribute.value.column = "attrvalue",
id.columns = c("pid"),
attribute.table = iris_attribute_train,
response.table = iris_response_train,
response.column = "response",
num.splits = 3,
approx.splits = FALSE,
nodesize = 10,
max.depth = 10,
split.measure = "gini"
)
# Run predict on the output of td_decision_tree_mle() function.
td_decision_tree_predict_out <- td_decision_tree_predict_mle_sqle(
object = decision_tree_out,
newdata = iris_attribute_test,
newdata.partition.column = c("pid"),
newdata.order.column = c("attribute"),
attr.table.groupby.columns = c("attribute"),
attr.table.pid.columns = c("pid"),
attr.table.val.column = "attrvalue",
accumulate = c("attrvalue")
)
# Alternatively use S3 predict function to run predict on the output of
# td_decision_tree_mle() function.
predict_out <- predict(decision_tree_out,
newdata = iris_attribute_test,
newdata.partition.column = c("pid"),
newdata.order.column = c("attribute"),
attr.table.groupby.columns = c("attribute"),
attr.table.pid.columns = c("pid"),
attr.table.val.column = "attrvalue",
accumulate = c("attrvalue")
)