PolynomialFeaturesTransform
Description
td_polynomial_features_transform_sqle()
function generates a feature matrix of all polynomial
combinations of the feature by extracting the target column, degree, bias and interaction
information from the output of the td_polynomial_features_fit_sqle()
function.
Usage
td_polynomial_features_transform_sqle (
data = NULL,
object = NULL,
accumulate = NULL,
...
)
Arguments
data |
Required Argument. |
object |
Required Argument. |
accumulate |
Optional Argument. |
... |
Specifies the generic keyword arguments SQLE functions accept. volatile: Function allows the user to partition, hash, order or local order the input data. These generic arguments are available for each argument that accepts tbl_teradata as input and can be accessed as:
Note: |
Value
Function returns an object of class "td_polynomial_features_transform_sqle"
which is a named list containing object of class "tbl_teradata".
Named list member(s) can be referenced directly with the "$" operator
using the name(s):result
Examples
# Get the current context/connection.
con <- td_get_context()$connection
# Load the example data.
loadExampleData("tdplyr_example", "numerics")
# Create tbl_teradata object.
numerics <- tbl(con, "numerics")
# Check the list of available analytic functions.
display_analytic_functions()
# Example 1: Generate feature tbl_teradata for all 2D polynomial combination of columns
# "integer_col" and "smallint_col".
fit_obj <- td_polynomial_features_fit_sqle(
data=numerics,
target.columns=c("integer_col", "smallint_col"),
degree=2)
# Print the result.
print(fit_obj$result)
print(fit_obj$output.data)
# Generate feature matrix. Note that tbl_teradata representing
# the model is passed as input to "object".
obj <- td_polynomial_features_transform_sqle(data=numerics,
object=fit_obj$result)
# Print the result.
print(obj$result)
# Example 2: Generate feature matrix. Note that model is passed as instance of
# td_polynomial_features_fit_sqle to "object".
obj1 <- td_polynomial_features_transform_sqle(data=numerics,
object=fit_obj)
# Print the result.
print(obj1$result)
# Alternatively use S3 transform function to run transform on the output of
# td_polynomial_features_fit_sqle() function.
obj1 <- transform(fit_obj,
data=numerics)
# Print the result.
print(obj1$result)