DecisionForestPredict
Description
The td_decision_forest_predict_mle_sqle()
function uses the model generated by the
td_decision_forest_mle()
function to generate predictions on a response variable for a
test set of data.
The model can be stored in either a tbl_teradata or a td_decision_forest_mle object.
Usage
td_decision_forest_predict_mle_sqle(
object = NULL,
newdata = NULL,
id.column = NULL,
detailed = FALSE,
terms = NULL,
output.prob = FALSE,
output.responses = NULL,
...
)
Arguments
object |
Required Argument. |
newdata |
Required Argument. |
id.column |
Required Argument. |
detailed |
Optional Argument. |
terms |
Optional Argument. |
output.prob |
Optional Argument. |
output.responses |
Optional Argument. |
... |
Specifies the generic keyword arguments SQLE functions accept. volatile: Function allows the user to partition, hash, order or local order the input data. These generic arguments are available for each argument that accepts tbl_teradata as input and can be accessed as:
Note: |
Value
Function returns an object of class "td_decision_forest_predict_mle_sqle"
which is a named list containing object of class "tbl_teradata".
Named list member(s) can be referenced directly with the "$" operator
using the name(s):result
Examples
# Get the current context/connection.
con <- td_get_context()$connection
# Load example data.
loadExampleData("decisionforestpredict_example", "housing_test", "housing_train")
# Create object(s) of class "tbl_teradata".
housing_test <- tbl(con, "housing_test")
housing_train <- tbl(con, "housing_train")
# Example 1 -
# First train the data, i.e., create a decision forest Model.
formula <- (homestyle ~ driveway + recroom + fullbase + gashw + airco + prefarea + price
+ lotsize + bedrooms + bathrms + stories + garagepl)
decision_forest_model <- td_decision_forest_mle(data=housing_train,
formula = formula,
tree.type="classification",
ntree=50,
tree.size=100,
nodesize=1,
variance=0,
max.depth=12,
maxnum.categorical=20,
mtry=3,
mtry.seed=100,
seed=100
)
# Run predict on the output of td_decision_forest_mle() function.
td_decision_forest_predict_out <- td_decision_forest_predict_mle_sqle(
object = decision_forest_model,
newdata = housing_test,
id.column = "sn",
detailed = FALSE,
terms = c("homestyle")
)
# Print the result.
print(decision_forest_predict_out$result)