QQNorm
Description
Function determines if values in input data columns follow normal distribution or not. It returns the quantiles of the column values and corresponding theoretical quantile values from a normal distribution. If the column values are normally distributed, then the quantiles of column values and normal quantile values appear in a straight line when plotted on a 2D graph.
Usage
td_qq_norm_sqle (
data = NULL,
target.columns = NULL,
rank.columns = NULL,
output.columns = NULL,
accumulate = NULL,
...
)
Arguments
data |
Required Argument. |
target.columns |
Required Argument. |
rank.columns |
Required Argument. |
output.columns |
Optional Argument. |
accumulate |
Optional Argument. |
... |
Specifies the generic keyword arguments SQLE functions accept. volatile: Function allows the user to partition, hash, order or local order the input data. These generic arguments are available for each argument that accepts tbl_teradata as input and can be accessed as:
Note: |
Value
Function returns an object of class "td_qq_norm_sqle"
which is a named list containing object of class "tbl_teradata".
Named list member(s) can be referenced directly with the "$" operator
using the name(s):result
Examples
# Get the current context/connection.
con <- td_get_context()$connection
# Load the example data.
loadExampleData("tdplyr_example", "rank_table")
# Create tbl_teradata object.
rank_df <- tbl(con, "rank_table")
# Check the list of available analytic functions.
display_analytic_functions()
# Example 1: Get theoretical quantile values for 'age' and 'fare'.
obj <- td_qq_norm_sqle(data=rank_df,
target.columns=c("age", "fare"),
rank.columns=c("rank_age", "rank_fare"))
# Print the result.
print(obj$result)