TDGLMPredict
Description
The td_glm_predict_sqle()
function predicts target values (regression)
and class labels (classification) for test data using a model generated by
the td_glm_sqle()
.
Notes:
Before using the features in the function, user must standardize the Input features using
td_scale_fit_sqle()
andtd_scale_transform_sqle()
functions.The function only accepts numeric features. Therefore, user must convert the categorical features to numeric values before prediction.
The function skips the rows with missing (null) values during prediction.
User can use
td_regression_evaluator_sqle()
,td_classification_evaluator_sqle()
, ortd_roc_sqle()
function as a post-processing step for evaluating prediction results.The
td_glm_predict_sqle()
function accepts models fromtd_glm_sqle()
function in SQLE.
Usage
td_glm_predict_sqle (
object = NULL,
newdata = NULL,
id.column = NULL,
accumulate = NULL,
output.prob = FALSE,
output.responses = NULL,
...
)
Arguments
object |
Required Argument. |
newdata |
Required Argument. |
id.column |
Required Argument. |
accumulate |
Optional Argument. |
output.prob |
Optional Argument. |
output.responses |
Optional Argument. |
... |
Specifies the generic keyword arguments SQLE functions accept. Below
are the generic keyword arguments: volatile: Function allows the user to partition, hash, order or local order the input data. These generic arguments are available for each argument that accepts tbl_teradata as input and can be accessed as:
Note: |
Value
Function returns an object of class "td_glm_predict_sqle"
which is a named list containing object of class "tbl_teradata".
Named list member(s) can be referenced directly with the "$" operator
using the name(s):result
Examples
# Get the current context/connection.
con <- td_get_context()$connection
# Load the example data.
loadExampleData("tdplyr_example", "cal_housing_ex_raw")
# Create tbl_teradata object.
df <- tbl(con, "cal_housing_ex_raw")
# Check the list of available analytic functions.
display_analytic_functions()
# Example 1: This example takes raw housing data, and does the following
# Uses td_scale_fit_sqle() to standardize the data.
# Uses td_scale_transform_sqle() to transform the data.
# Uses td_glm_sqle() to generate a model.
# Uses td_glm_predict_sqle() to predict target values.
# Scale "target_columns" with respect to 'STD' value of the column.
fit_obj <- td_scale_fit_sqle(
data=df,
target.columns=c('MedInc', 'HouseAge', 'AveRooms',
'AveBedrms', 'Population', 'AveOccup',
'Latitude', 'Longitude'),
scale.method="STD")
# Scale values specified in the input data using the fit data generated by
# the td_scale_fit_sqle() function above.
obj <- td_scale_transform_sqle(
object=fit_obj$output,
data=df,
accumulate=c("id","MedHouseVal"))
# Generate regression model using generalized linear model(GLM).
answer <- td_glm_sqle(
input.columns=c("MedInc", "HouseAge", "AveRooms",
"AveBedrms", "Population", "AveOccup",
"Latitude", "Longitude"),
response.column="MedHouseVal",
data=obj$result,
nesterov=FALSE)
# td_glm_predict_sqle() predicts 'MedHouseVal' using generated regression
# model by GLM and newdata.
# Note that tbl_teradata representing the model is passed as input to "object".
TDGLMPredict_out <- td_glm_predict_sqle(
object=answer$result,
newdata=obj$result,
accumulate="MedHouseVal",
id.column="id")
# Print the result.
print(TDGLMPredict_out$result)
# Example 2: td_glm_predict_sqle() predicts the 'MedHouseVal' using
# generated regression model by td_glm_sqle and newdata.
# Note that model is passed as instance of GLM to "object".
TDGLMPredict_out1 <- td_glm_predict_sqle(
object=answer,
newdata=obj$result,
accumulate="MedHouseVal",
id.column="id")
# Print the result.
print(TDGLMPredict_out1$result)
# Alternatively use S3 predict function to run predict on the output of
# td_glm_sqle() function.
TDGLMPredict_out1 <- predict(answer,
newdata=obj$result,
accumulate="MedHouseVal",
id.column="id")
# Print the result.
print(TDGLMPredict_out1$result)