Decision Tree Model | BYOM | Teradata Vantage - DecisionTree - Teradata Vantage

Teradata Vantageā„¢ - Bring Your Own Model User Guide

Deployment
VantageCloud
VantageCore
Edition
Enterprise
IntelliFlex
Lake
VMware
Product
Teradata Vantage
Release Number
6.0
Published
March 2025
ft:locale
en-US
ft:lastEdition
2025-03-21
dita:mapPath
fee1607120608274.ditamap
dita:ditavalPath
ayr1485454803741.ditaval
dita:id
fee1607120608274
from sklearn import datasets, tree
import pandas as pd
from skl2onnx import convert_sklearn
from skl2onnx.common.data_types import FloatTensorType
 
from sklearn.pipeline import Pipeline
 
import os
import time
from teradataml import *
 
 
display.print_sqlmr_query = True
passwd = "alice"
uid = "alice"
host="server123@mydomain.com"
 
con = create_context(host=host, username=uid, password=passwd)
con
 
train_df = DataFrame.from_query("select * from iris_train")
traid_pd = train_df.to_pandas()
traid_pd
type(traid_pd)
 
X = traid_pd.drop('species', axis=1)
y = traid_pd[['species']]
 
pipeline = Pipeline([
    ("classifier", tree.DecisionTreeClassifier())
])
 
pipeline.fit(X, y.values.ravel())
 
# Convert into ONNX format
initial_type = [('float_input', FloatTensorType([None, 4]))]
onx = convert_sklearn(pipeline, initial_types=initial_type)
with open("iris_db_dt_model.onnx", "wb") as f:
    f.write(onx.SerializeToString())