from sklearn import datasets, tree import pandas as pd from skl2onnx import convert_sklearn from skl2onnx.common.data_types import FloatTensorType from sklearn.pipeline import Pipeline import os import time from teradataml import * display.print_sqlmr_query = True passwd = "alice" uid = "alice" host="server123@mydomain.com" con = create_context(host=host, username=uid, password=passwd) con train_df = DataFrame.from_query("select * from iris_train") traid_pd = train_df.to_pandas() traid_pd type(traid_pd) X = traid_pd.drop('species', axis=1) y = traid_pd[['species']] pipeline = Pipeline([ ("classifier", tree.DecisionTreeClassifier()) ]) pipeline.fit(X, y.values.ravel()) # Convert into ONNX format initial_type = [('float_input', FloatTensorType([None, 4]))] onx = convert_sklearn(pipeline, initial_types=initial_type) with open("iris_db_dt_model.onnx", "wb") as f: f.write(onx.SerializeToString())