TD_WhichMin Function | WhichMin | Teradata Vantage - TD_WhichMin - Analytics Database

Database Analytic Functions

Deployment
VantageCloud
VantageCore
Edition
Enterprise
IntelliFlex
VMware
Product
Analytics Database
Release Number
17.20
Published
June 2022
Language
English (United States)
Last Update
2024-10-04
dita:mapPath
gjn1627595495337.ditamap
dita:ditavalPath
ayr1485454803741.ditaval
dita:id
jmh1512506877710
Product Category
Teradata Vantage™

TD_WhichMin displays all rows that have the minimum value in specified input table column. Minimum value represents the lower limit of a quantity or set of values. For example, if we have a set of numbers such as {3, 5, 1, 7, 2}, the minimum value would be 1 since it is the smallest number in the set.

Minimum values are often used in optimization problems to find the smallest possible value of a function within a given domain. This can be useful in various fields such as engineering, economics, and physics.

Finding the minimum value in a dataset is important for the following reasons:
  • Quality Control: Identify potential errors in the data. For example, if you have a dataset of temperatures that range from -20°C to 40°C, but there is a minimum value of -100°C, then it is likely that there is an error in the data.
  • Data Normalization: Normalize data by providing a baseline for comparison. By setting the minimum value to zero, you can create a normalized scale that allows for easy comparison between different datasets.
  • Analysis: Identify outliers or unusual data points in the dataset. Outliers can have a significant impact on statistical analysis and can skew the results, so it’s important to identify them.
  • Machine Learning: Scale data when using machine learning. Scaling data involves transforming it to fit within a specific range, which often means setting the minimum value to zero.

Finding the minimum value in a dataset is an important step in data analysis, data normalization, and machine learning. It helps to ensure data quality and accuracy and provides a baseline for comparison and analysis.