TD_ANOVA Example | ANOVA | Teradata Vantage - Using TD_ANOVA to Determine Difference of Insect Sprays - Analytics Database

Database Analytic Functions

Deployment
VantageCloud
VantageCore
Edition
Enterprise
IntelliFlex
VMware
Product
Analytics Database
Release Number
17.20
Published
June 2022
Language
English (United States)
Last Update
2024-10-04
dita:mapPath
gjn1627595495337.ditamap
dita:ditavalPath
ayr1485454803741.ditaval
dita:id
jmh1512506877710
lifecycle
latest
Product Category
Teradata Vantageā„¢

Your independent variable is insect spray type, and you have data on spray type A, B, C, D, E, and F. You can use one-way analysis to determine whether there is any difference among these spray types based on their means.

TD_ANOVA Input: Insect_sprays

groupA groupB groupC groupD groupE groupF 
 ------ ------ ------ ------ ------ ------ 
      7     17      1      5      6      9
     10     17      2      5      1     13
     10     11      0      3      3     11
     12     14      1      3      6     16
     13     13      4      4      4     13
     14     11      2      6      5     22
     14     16      3      4      3     15
     14      7      1      2      6     24
     17     19      3      5      3     26
     20     21      0      5      2     26
     20     21      7     12      3     15
     23     17      1      5      1     10

TD_ANOVA SQL Call

SELECT * from TD_ANOVA (
ON insect_sprays as InputTable
USING
ALPHA (0.05)
) AS dt;

TD_ANOVA Output Table

sum_of_squares(between groups) sum_of_squares(within groups) df(between groups) df(within groups) mean_square(between groups) mean_square(within groups) f_statistic  alpha  critical_f  p_value  conclusion              
------------------------------ ----------------------------- ------------------ ----------------- --------------------------- -------------------------- ----------- ------ ----------- -------- ---------- 
2656.902778000  1019.083333000  5  66  531.380556000  15.440657000  34.414376000  0.050000000  2.353809000  0.000000000  Reject Null hypothesis