Example: How to Use TD_NaiveBayesPredict - Analytics Database

Database Analytic Functions

Deployment
VantageCloud
VantageCore
Edition
Enterprise
IntelliFlex
VMware
Product
Analytics Database
Release Number
17.20
Published
June 2022
ft:locale
en-US
ft:lastEdition
2025-04-01
dita:mapPath
gjn1627595495337.ditamap
dita:ditavalPath
qkf1628213546010.ditaval
dita:id
jmh1512506877710
Product Category
Teradata Vantageā„¢

Every complete example in this document is available in a zip file that you can download. The zip file includes a SQL script file that creates the input tables for the examples. If you are reading this document on https://docs.teradata.com/, you can download the zip file from the attachment in the left sidebar.

This section shows the input table, SQL query, and output tables of an example using TD_NaiveBayesPredict.

The following table contains a subset of housing dataset.
Only part of the dataset is shown in this example.
DROP TABLE housing_test;
CREATE TABLE housing_test (sn integer, price real, lotsize real, bedrooms  integer, bathrms integer, stories integer, driveway varchar(10), recroom varchar(10), fullbase varchar(10), gashw varchar(10), airco varchar(10), garagepl integer, prefarea varchar(10), homestyle varchar(10)) PRIMARY INDEX(sn);
insert into housing_test values(13,27000,1700,3,1,2,'yes','no','no','no','no',0,'no','Classic');
insert into housing_test values(16,37900,3185,2,1,1,'yes','no','no','no','yes',0,'no','Classic');
insert into housing_test values(25,42000,4960,2,1,1,'yes','no','no','no','no',0,'no','Classic');
insert into housing_test values(38,67000,5170,3,1,4,'yes','no','no','no','yes',0,'no','Eclectic');
insert into housing_test values(53,68000,9166,2,1,1,'yes','no','yes','no','yes',2,'no','Eclectic');
...
SELECT * FROM housing_test ORDER BY 1;

TD_NaiveBayesPredict SQL Call

SELECT * FROM TD_NaiveBayesPredict (
  ON housing_test AS InputTable
  ON housing_train_model AS ModelTable DIMENSION
  USING
  IDColumn ('sn')
  NumericInputs('price','lotsize','bedrooms','bathrms','stories','garagepl')
  CategoricalInputs('driveway','recroom','fullbase','gashw','airco','prefarea')
  Responses ('Classic', 'Eclectic', 'bungalow')
  OutputProb('t')
  Accumulate('homestyle')
) AS dt ORDER BY sn;
TD_NaiveBayesPredict Output Table
sn Prediction Loglik_Classic Loglik_Eclectic Loglik_bungalow Prob_Classic Prob_Eclectic Prob_bungalow homestyle
13 Classic -25.2150421 -30.7597 -44.04708467 0.99610712 0.00389288 .00000001 Classic
16 Classic -24.502771 -29.6444 -42.43191857 0.99418596 0.00581403 .00000002 Classic
25 Classic -22.1674829 -27.7935 -41.38195573 0.99640986 0.00359014 .00000000 Classic
38 Eclectic -40.7803961 -28.2814 -33.56134748 0.00000371 0.99492952 .00506677 Eclectic
53 Eclectic -42.1760628 -28.75 -35.44498472 0.00000147 0.99876298 .00123555 Eclectic
... ... ... ... ... ... ... ... ...

As the data is in dense format, you need to use TD_Unpivoting function to change the data to sparse format.

DROP TABLE housing_test_sparse;
CREATE MULTISET TABLE housing_test_sparse AS( 
SELECT * FROM TD_UNPIVOTING(
ON housing_test AS InputTable
USING
IDColumn('sn')
TargetColumns('price','lotsize','bedrooms','bathrms','stories','garagepl','driveway','recroom','fullbase','gashw','airco','prefarea')
AttributeColName('AttributeName') 
ValueColName('AttributeValue')
Accumulate('homestyle')
) AS dt) WITH data;

TD_NaiveBayesPredict SQL Call

SELECT * FROM TD_NaiveBayesPredict (
  ON housing_test_sparse AS InputTable
  ON housing_train_model_sparse AS ModelTable DIMENSION
  USING
  IDColumn ('sn')
  AttributeNameColumn('AttributeName') 
  AttributeValueColumn('AttributeValue')
  Responses ('Classic', 'Eclectic', 'bungalow')
  OutputProb('t')
  Accumulate('homestyle')
) AS dt ORDER BY sn;
TD_NaiveBayesPredict Output Table
sn Prediction Loglik_Classic Loglik_Eclectic Loglik_bungalow Prob_Classic Prob_Eclectic Prob_bungalow homestyle
13 Classic -25.2150421 -30.7597 -44.04708467 0.99610712 0.00389288 .00000001 Classic
16 Classic -24.502771 -29.6444 -42.43191857 0.99418596 0.00581403 .00000002 Classic
25 Classic -22.1674829 -27.7935 -41.38195573 0.99640986 0.00359014 .00000000 Classic
38 Eclectic -40.7803961 -28.2814 -33.56134748 0.00000371 0.99492952 .00506677 Eclectic
53 Eclectic -42.1760628 -28.75 -35.44498472 0.00000147 0.99876298 .00123555 Eclectic
... ... ... ... ... ... ... ... ...