TD_BINARYMATRIXOP Input Table BINARYM_COMPLEX_LEFT
Row |
ID |
SEQ |
TICK |
REAL_VAL |
IMAGINARY_VAL |
1 |
1 |
1 |
1 |
1.1 |
10.1 |
2 |
1 |
1 |
2 |
1.2 |
10.2 |
3 |
1 |
1 |
3 |
1.3 |
10.3 |
4 |
1 |
1 |
4 |
1.4 |
10.4 |
... |
... |
... |
... |
... |
... |
19 |
2 |
2 |
4 |
5.4 |
50.4 |
20 |
2 |
2 |
5 |
5.5 |
50.5 |
TD_BINARYMATRIXOP Input Table BINARYM_COMPLEX_RIGHT
Row |
ID |
SEQ |
TICK |
REAL_VAL |
IMAGINARY_VAL |
1 |
1 |
1 |
1 |
1.1 |
10.1 |
2 |
1 |
1 |
2 |
1.2 |
10.2 |
3 |
1 |
1 |
3 |
1.3 |
10.3 |
4 |
1 |
1 |
4 |
1.4 |
10.4 |
... |
... |
... |
... |
... |
... |
19 |
2 |
2 |
4 |
5.4 |
50.4 |
20 |
2 |
2 |
5 |
5.5 |
50.5 |
TD_BINARYMATRIXOP Input Table BINARYM_REALS_LEFT
ROW |
ID |
SEQ |
TICK |
A |
B |
C |
D |
1 |
1 |
1 |
1 |
1.1 |
10.1 |
20.1 |
30.3 |
2 |
1 |
1 |
2 |
1.2 |
10.2 |
20.2 |
30.2 |
3 |
1 |
1 |
3 |
1.3 |
10.3 |
20.3 |
30.3 |
4 |
1 |
1 |
4 |
1.4 |
10.4 |
20.4 |
0.4 |
... |
... |
... |
... |
... |
... |
... |
... |
19 |
2 |
2 |
4 |
5.4 |
50.4 |
60.4 |
70.4 |
20 |
2 |
2 |
5 |
5.5 |
50.5 |
60.5 |
70.5 |
TD_BINARYMATRIXOP Input Table BINARYM_REALS_RIGHT
ROW |
ID |
SEQ |
TICK |
A |
B |
C |
D |
1 |
1 |
1 |
1 |
1.1 |
10.1 |
20.1 |
30.3 |
2 |
1 |
1 |
2 |
1.2 |
10.2 |
20.2 |
30.2 |
3 |
1 |
1 |
3 |
1.3 |
10.3 |
20.3 |
30.3 |
4 |
1 |
1 |
4 |
1.4 |
10.4 |
20.4 |
0.4 |
... |
... |
... |
... |
... |
... |
... |
... |
19 |
2 |
2 |
4 |
5.4 |
50.4 |
60.4 |
70.4 |
20 |
2 |
2 |
5 |
5.5 |
50.5 |
60.5 |
70.5 |
TD_BINARYMATRIXOP Call with Addition
EXECUTE FUNCTION INTO VOLATILE ART(MATHEXAMPLE)
TD_BINARYMATRIXOP(
MATRIX_SPEC( TABLE_NAME(BINARYM_COMPLEX_LEFT), ROW_AXIS(SEQUENCE(SEQ)),
COLUMN_AXIS(SEQUENCE(TICK)), MATRIX_ID(ID),
PAYLOAD(FIELDS(REAL_VAL,IMAGINARY_VAL), CONTENT(COMPLEX)) ) ,
MATRIX_SPEC( TABLE_NAME(BINARYM_COMPLEX_RIGHT), ROW_AXIS(SEQUENCE(SEQ)),
COLUMN_AXIS(SEQUENCE(TICK)), MATRIX_ID(ID),
PAYLOAD(FIELDS(REAL_VAL,IMAGINARY_VAL), CONTENT(COMPLEX)) )
WHERE ID=1,
FUNC_PARAMS( MATHOP(ADD) ),
INPUT_FMT(INPUT_MODE(MANY2ONE))
);
TD_BINARYMATRIXOP Result with Addition
SELECT * FROM MATHEXAMPLE;
ID ROW_I COLUMN_I OUT_REAL_VAL OUT_IMAGINARY_VAL
----------- -------------------- -------------------- ---------------------- ----------------------
1 0 0 2.20000000000000E 000 2.02000000000000E 001
1 0 1 2.40000000000000E 000 2.04000000000000E 001
1 0 2 2.60000000000000E 000 2.06000000000000E 001
1 0 3 2.80000000000000E 000 2.08000000000000E 001
1 0 4 3.00000000000000E 000 2.10000000000000E 001
1 1 0 2.20000000000000E 000 2.02000000000000E 001
1 1 1 2.40000000000000E 000 2.04000000000000E 001
1 1 2 2.60000000000000E 000 2.06000000000000E 001
1 1 3 2.80000000000000E 000 2.08000000000000E 001
1 1 4 3.00000000000000E 000 2.10000000000000E 001
2 0 0 6.20000000000000E 000 6.02000000000000E 001
2 0 1 6.40000000000000E 000 6.04000000000000E 001
2 0 2 6.60000000000000E 000 6.06000000000000E 001
2 0 3 6.80000000000000E 000 6.08000000000000E 001
2 0 4 7.00000000000000E 000 6.10000000000000E 001
2 1 0 6.20000000000000E 000 6.02000000000000E 001
2 1 1 6.40000000000000E 000 6.04000000000000E 001
2 1 2 6.60000000000000E 000 6.06000000000000E 001
2 1 3 6.80000000000000E 000 6.08000000000000E 001
2 1 4 7.00000000000000E 000 6.10000000000000E 001
TD_BINARYMATRIXOP Call with REAL and MULTIVAR_REAL matrixes
EXECUTE FUNCTION INTO VOLATILE ART(MATHEXAMPLE)
TD_BINARYMATRIXOP(
MATRIX_SPEC(TABLE_NAME(BINARYM_REALS_LEFT), ROW_AXIS(SEQUENCE(SEQ)),
COLUMN_AXIS(SEQUENCE(TICK)),MATRIX_ID(ID),
PAYLOAD(FIELDS(A), CONTENT(REAL)) ) WHERE ID=1,
MATRIX_SPEC(TABLE_NAME(BINARYM_REALS_RIGHT), ROW_AXIS(SEQUENCE(SEQ)),
COLUMN_AXIS(SEQUENCE(TICK)),MATRIX_ID(ID),
PAYLOAD(FIELDS(A,B,C,D), CONTENT(MULTIVAR_REAL)) ) WHERE ID=1,
FUNC_PARAMS( MATHOP(ADD) ),
INPUT_FMT(INPUT_MODE(ONE2ONE))
);
TD_BINARYMATRIXOP Result with REAL and MULTIVAR_REAL matrixes
SELECT * FROM MATHEXAMPLE;
ID ROW_I COLUMN_I OUT_A OUT_B OUT_C OUT_D
----------- -------------------- -------------------- ---------------------- ---------------------- ---------------------- ---------------------
1 0 0 2.20000000000000E 000 1.12000000000000E 001 2.12000000000000E 001 3.12000000000000E 001
1 0 1 2.40000000000000E 000 1.14000000000000E 001 2.14000000000000E 001 3.14000000000000E 001
1 0 2 2.60000000000000E 000 1.16000000000000E 001 2.16000000000000E 001 3.16000000000000E 001
1 0 3 2.80000000000000E 000 1.18000000000000E 001 2.18000000000000E 001 3.18000000000000E 001
1 0 4 3.00000000000000E 000 1.20000000000000E 001 2.20000000000000E 001 3.20000000000000E 001
1 1 0 2.20000000000000E 000 1.12000000000000E 001 2.12000000000000E 001 3.12000000000000E 001
1 1 1 2.40000000000000E 000 1.14000000000000E 001 2.14000000000000E 001 3.14000000000000E 001
1 1 2 2.60000000000000E 000 1.16000000000000E 001 2.16000000000000E 001 3.16000000000000E 001
1 1 3 2.80000000000000E 000 1.18000000000000E 001 2.18000000000000E 001 3.18000000000000E 001
1 1 4 3.00000000000000E 000 1.20000000000000E 001 2.20000000000000E 001 3.20000000000000E 001
TD_BINARYMATRIXOP Call with ONE2ONE Subtraction
EXECUTE FUNCTION INTO VOLATILE ART (TRENDREMOVED)
TD_BINARYMATRIXOP (
MATRIX_SPEC (
TABLE_NAME (BOUY_TABLE),
ROW_AXIS (TIMECODE (MYTIMECODE)),
COLUMN_AXIS (
SEQUENCE (SEQNO),
MATRIX_ID (BOUYID),
PAYLOAD (FIELDS (SALINITY), CONTENT (REAL))
)
) WHERE BUOYID = 33,
MATRIX_SPEC (
TABLE_NAME (SMOOTHED_DATA),
ROW_AXIS (SEQUENCE (ROW_I)),
COLUMN_AXIS (
SEQUENCE (COLUMN_I),
MATRIX_ID (ROW_I),
PAYLOAD (FIELDS (MAGNITUDE), CONTENT (REAL))
)
) WHERE ROW_I = 33,
FUNC_PARAMS (MATHOP (SUB)),
INPUT_FMT(INPUT_MODE (ONE2ONE))
);
TD_BINARYMATRIXOP Output
Display the RETURNS TABLE with this statement:
SELECT * FROM TRENDREMOVED;
STATIONID ROW_I COLUMN_I OUT_VELOCITY
33 0 0 128.0
33 0 1 126.9
33 0 2 127.9
33 1 0 126.8
33 1 1 128.1
33 1 2 128.3
TD_BINARYMATRIXOP Call with MANY2ONE Subtraction
EXECUTE FUNCTION INTO VOLATILE ART(MATHEXAMPLE)
TD_BINARYMATRIXOP(
MATRIX_SPEC( TABLE_NAME(BINARYM_COMPLEX_LEFT), ROW_AXIS(SEQUENCE(SEQ)), COLUMN_AXIS(SEQUENCE
(TICK)), MATRIX_ID(ID), PAYLOAD(FIELDS(REAL_VAL,IMAGINARY_VAL), CONTENT(COMPLEX)) ) ,
MATRIX_SPEC( TABLE_NAME(BINARYM_COMPLEX_RIGHT), ROW_AXIS(SEQUENCE(SEQ)), COLUMN_AXIS(SEQUENCE
(TICK)), MATRIX_ID(ID),PAYLOAD(FIELDS(REAL_VAL,IMAGINARY_VAL), CONTENT(COMPLEX)) )
WHERE ID=1,
FUNC_PARAMS( MATHOP(SUB) ),
INPUT_FMT(INPUT_MODE(MANY2ONE))
);
TD_BINARYMATRIXOP Output
Display the RETURNS TABLE with this statement:
SELECT * FROM MATHEXAMPLE;
ID ROW_I COLUMN_I OUT_REAL_VAL OUT_IMAGINARY_VAL
----------- -------------------- -------------------- ---------------------- ----------------------
1 0 0 2.20000000000000E 000 2.02000000000000E 001
1 0 1 2.40000000000000E 000 2.04000000000000E 001
1 0 2 2.60000000000000E 000 2.06000000000000E 001
1 0 3 2.80000000000000E 000 2.08000000000000E 001
1 0 4 3.00000000000000E 000 2.10000000000000E 001
1 1 0 2.20000000000000E 000 2.02000000000000E 001
1 1 1 2.40000000000000E 000 2.04000000000000E 001
1 1 2 2.60000000000000E 000 2.06000000000000E 001
1 1 3 2.80000000000000E 000 2.08000000000000E 001
1 1 4 3.00000000000000E 000 2.10000000000000E 001
2 0 0 6.20000000000000E 000 6.02000000000000E 001
2 0 1 6.40000000000000E 000 6.04000000000000E 001
2 0 2 6.60000000000000E 000 6.06000000000000E 001
2 0 3 6.80000000000000E 000 6.08000000000000E 001
2 0 4 7.00000000000000E 000 6.10000000000000E 001
2 1 0 6.20000000000000E 000 6.02000000000000E 001
2 1 1 6.40000000000000E 000 6.04000000000000E 001
2 1 2 6.60000000000000E 000 6.06000000000000E 001
2 1 3 6.80000000000000E 000 6.08000000000000E 001
2 1 4 7.00000000000000E 000 6.10000000000000E 001
TD_BINARYMATRIXOP Call with MATCH Subtraction
EXECUTE FUNCTION INTO VOLATILE ART(MATHEXAMPLE)
TD_BINARYMATRIXOP(
MATRIX_SPEC(TABLE_NAME(BINARYM_REALS_LEFT), ROW_AXIS(SEQUENCE(SEQ)), COLUMN_AXIS(SEQUENCE
(TICK)),MATRIX_ID(ID),PAYLOAD(FIELDS(A), CONTENT(REAL)) ),
MATRIX_SPEC(TABLE_NAME(BINARYM_REALS_RIGHT), ROW_AXIS(SEQUENCE(SEQ)), COLUMN_AXIS(SEQUENCE
(TICK)),MATRIX_ID(ID),PAYLOAD(FIELDS(B), CONTENT(REAL)) ),
FUNC_PARAMS( MATHOP(MUL) ),
INPUT_FMT(INPUT_MODE(MATCH))
);
TD_BINARYMATRIXOP Output
Display the RETURNS TABLE with this statement:
SELECT * FROM MATHEXAMPLE;
ID ROW_I COLUMN_I OUT_A
----------- -------------------- -------------------- ----------------------
1 0 0 1.11100000000000E 001
1 0 1 1.22400000000000E 001
1 0 2 1.33900000000000E 001
1 0 3 1.45600000000000E 001
1 0 4 1.57500000000000E 001
1 1 0 1.11100000000000E 001
1 1 1 1.22400000000000E 001
1 1 2 1.33900000000000E 001
1 1 3 1.45600000000000E 001
1 1 4 1.57500000000000E 001
2 0 0 2.55510000000000E 002
2 0 1 2.61040000000000E 002
2 0 2 2.66590000000000E 002
2 0 3 2.72160000000000E 002
2 0 4 2.77750000000000E 002
2 1 0 2.55510000000000E 002
2 1 1 2.61040000000000E 002
2 1 2 2.66590000000000E 002
2 1 3 2.72160000000000E 002
2 1 4 2.77750000000000E 002