Methods of AutoML |Teradata Package for Python | teradataml - Methods of AutoML - Teradata Package for Python

Teradata® Package for Python User Guide

Deployment
VantageCloud
VantageCore
Edition
VMware
Enterprise
IntelliFlex
Product
Teradata Package for Python
Release Number
20.00
Published
March 2025
ft:locale
en-US
ft:lastEdition
2025-11-06
dita:mapPath
nvi1706202040305.ditamap
dita:ditavalPath
plt1683835213376.ditaval
dita:id
rkb1531260709148
Product Category
Teradata Vantage
To facilitate the key features mentioned in the previous section, teradataml AutoML provides the following methods:
  • _init_(): Create instance for AutoML training.
    The following APIs are available for instance creation based on problem types:
    The following methods are common for these APIs (AutoML, AutoRegressor, AutoClassifer, AutoFraud, AutoChurn, and AutoCluster).

    load(), deploy(), evaluate(), and visualize() methods are not applicable for AutoCluster.

  • fit: Fit over given dataset during AutoML training.
  • leaderboard: Display model leaderboard containing model rank and corresponding​ performance metrics.​
  • leader: Display best performing model.​
  • model_hyperparameters: Get hyperparameters of the model based on rank in leaderboard.
  • predict: Generate prediction and performance metrics.​
  • evaluate: Evaluate on data using model rank in leaderboard to generate performance metrics.
  • generate_custom_config: Generate custom config JSON required for customized run.
  • get_persisted_tables: List the persisted tables created during execution.
  • deploy: Save models to the specified table.
  • load: Load models information from the specified table.
  • remove_saved_models: Remove the specified table containing saved models.
  • visualize: Visualize the teradataml DataFrame.