Methods of AutoML | teradataml - Methods of AutoML - Teradata Package for Python

Teradata® Package for Python User Guide

Deployment
VantageCloud
VantageCore
Edition
Enterprise
IntelliFlex
VMware
Product
Teradata Package for Python
Release Number
20.00
Published
December 2024
Language
English (United States)
Last Update
2024-12-18
dita:mapPath
nvi1706202040305.ditamap
dita:ditavalPath
plt1683835213376.ditaval
dita:id
rkb1531260709148
Product Category
Teradata Vantage

To facilitate the key features mentioned in the previous section, teradataml AutoML provides the following methods:

  • _init_(): Create instance for AutoML training.
    Three different APIs are available for instance creation based on problem types:
    • AutoML (AutoML._init_): Generic AutoML API that can be used to solve all three supported problem type.
    • AutoRegressor (AutoRegressor._init_): Specific AutoML API to solve regression problem type.
    • AutoClassifier (AutoClassifier._init_): Specific AutoML API to solve classification problem type.
    The following methods are common to all these three APIs.
  • fit: Fit over given dataset during AutoML training.
  • leaderboard: Display model leaderboard containing model rank and corresponding​ performance metrics.​
  • leader: Display best performing model.​
  • model_hyperparameters: Get hyperparameters of the model based on rank in leaderboard.
  • predict: Generate prediction and performance metrics.​
  • evaluate: Evaluate on data using model rank in leaderboard to generate performance metrics.
  • generate_custom_config: Generate custom config JSON required for customized run.
  • deploy: Save models to the specified table.
  • load: Load models information from the specified table.
  • remove_saved_models: Remove the specified table containing saved models.