This example shows the steps to subplot with every individual plot occupies different areas in figure.
Example
>>> load_example_data("weightedmovavg", "stock_vol")
- Axis and Figure using subplots().
>>> fig, axes = subplots(grid={(1,1): (1, 1), (1,2): (1,1), (2, 1): (1, 2)})
>>> stock_vol = DataFrame("stock_vol")
>>> stock_vol
name period stockprice volume id 3 pg 61/05/19 17.625 1582000.0 3 pg 61/05/23 17.625 608800.0 3 pg 61/05/24 17.750 1038800.0 3 pg 61/05/25 17.250 911200.0 3 pg 61/05/29 18.000 1672800.0 3 pg 61/05/31 18.000 1735600.0 3 pg 61/05/26 17.500 2005600.0 3 pg 61/05/22 17.750 317200.0 3 pg 61/05/18 18.250 1435200.0 3 pg 61/05/17 18.375 1032000.0
>>> ge_df = stock_vol[stock_vol.name == "ge"]
>>> pg_df = stock_vol[stock_vol.name == "pg"]
>>> ibm_df = stock_vol[stock_vol.name == "ibm"]
>>> ge_plot = ge_df.plot(x=ge_df.period, y=ge_df.stockprice, ax=axes[0], figure=fig, title="GE Stock Price", style="green")
>>> pg_plot = pg_df.plot(x=pg_df.period, y=pg_df.stockprice, ax=axes[1], figure=fig, title="PG Stock Price", style="red")
>>> ibm_plot = ibm_df.plot(x=ibm_df.period, y=ibm_df.stockprice, ax=axes[2], figure=fig, title="IBM Stock Price", style="blue", kind='bar')