Subplotting with Every Individual Plot Occupies Same Area in Figure - Subplotting with Every Individual Plot Occupies Same Area in Figure - Teradata Package for Python

Teradata® Package for Python User Guide

Deployment
VantageCloud
VantageCore
Edition
Enterprise
IntelliFlex
VMware
Product
Teradata Package for Python
Release Number
20.00
Published
December 2024
ft:locale
en-US
ft:lastEdition
2025-01-23
dita:mapPath
nvi1706202040305.ditamap
dita:ditavalPath
plt1683835213376.ditaval
dita:id
rkb1531260709148
lifecycle
latest
Product Category
Teradata Vantage

This example shows the steps to subplot with every individual plot occupies same area in figure.

  • Shapes of US states are generated from Free Blank United States Map in SVG - Resources | Simplemaps.com
  • Population data is accessed from Historical Population Change Data (1910-2020) (census.gov)

Example

  • >>> load_example_data("geodataframe", ["us_population", "us_states_shapes"])
  • >>> from teradataml import subplots
  • >>> fig, axis = subplots(2, 2)
    >>> fig.height = 1200
    >>> fig.heading = "Change in population density in US across four decades."
  • >>> axis
    [AxesSubplot(position=(1, 1), span=(1, 1)), AxesSubplot(position=(1, 2), span=(1, 1)), AxesSubplot(position=(2, 1), span=(1, 1)), AxesSubplot(position=(2, 2), span=(1, 1))]
  • Prepare the Data for subplotting.
    >>> us_population = DataFrame("us_population")
    >>> us_population
               location_type  population_year  population
    state_name
    Georgia            State             1930   2908506.0
    Georgia            State             1950   3444578.0
    Georgia            State             1960   3943116.0
    Georgia            State             1970   4589575.0
    Georgia            State             1990   6478216.0
    Georgia            State             2000   8186453.0
    Georgia            State             1980   5463105.0
    Georgia            State             1940   3123723.0
    Georgia            State             1920   2895832.0
    Georgia            State             1910   2609121.0
    >>> us_states_shapes = GeoDataFrame("us_states_shapes")
    >>> us_states_shapes
           state_name                     state_shape
    id
    NM     New Mexico  POLYGON ((472.45213 324.75551,
    VA       Virginia  POLYGON ((908.75086 270.98255,
    ND   North Dakota  POLYGON ((556.50879 73.847349,
    OK       Oklahoma  POLYGON ((609.50526 322.91131,
    WI      Wisconsin  POLYGON ((705.79187 134.80299,
    RI   Rhode Island  POLYGON ((946.50841 152.08022,
    HI         Hawaii  POLYGON ((416.34965 514.99923,
    KY       Kentucky  POLYGON ((693.17367 317.18459,
    WV  West Virginia  POLYGON ((836.73002 223.71281,
    NJ     New Jersey  POLYGON ((916.80709 207.30914,
  • Join shapes with population and filter only 1990 data.
    >>> population_data = us_states_shapes.join(us_population,
                                                on=us_population.state_name == us_states_shapes.state_name,
                                                lsuffix="us",
                                                rsuffix="t2")
    >>> population_data = population_data.select(["us_state_name", "state_shape", "population_year", "population"])
    
  • Find out the minimum and maximum population. This helps in coloring the plot.
    >>> population_data.assign(min_population=population_data.population.min(), max_population=population_data.population.max(), drop_columns=True)
       max_population  min_population
    0      39538223.0         55036.0
  • >>> population_data_2020 = population_data[population_data.population_year == 2020]
    >>> population_data_2010 = population_data[population_data.population_year == 2010]
    >>> population_data_2000 = population_data[population_data.population_year == 2000]
    >>> population_data_1990 = population_data[population_data.population_year == 1990]
  • Generate subplot.
    • Plot population_data_1990 on first axis.
      >>> plot_1990 = population_data_1990.plot(y=(population_data_1990.population, population_data_1990.state_shape),
                                                cmap='rainbow',
                                                figure=fig,
                                                ax=axis[0],
                                                reverse_yaxis=True,
                                                vmin=55036.0,
                                                vmax=39538223.0,
                                                title="US 1990 Population",
                                                xlabel="",
                                                ylabel="")
    • Plot population_data_2000 on second axis.
      >>> plot_2000 = population_data_2000.plot(y=(population_data_2000.population, population_data_2000.state_shape),
                                                cmap='rainbow',
                                                figure=fig,
                                                ax=axis[1],
                                                reverse_yaxis=True,
                                                vmin=55036.0,
                                                vmax=39538223.0,
                                                title="US 2000 Population",
                                                xlabel="",
                                                ylabel="")
    • Plot population_data_2010 on third axis.
      >>> plot_2010 = population_data_2010.plot(x=population_data_2010.population_year,
                                                y=(population_data_2010.population, population_data_2010.state_shape),
                                                cmap='rainbow',
                                                figure=fig,
                                                ax=axis[2],
                                                reverse_yaxis=True,
                                                vmin=55036.0,
                                                vmax=39538223.0,
                                                title="US 2010 Population",
                                                xlabel="",
                                                ylabel="",
                                                xtick_values_format="")
    • Plot population_data_2020 on fourth axis.
      >>> plot = population_data_2020.plot(x=population_data_2020.population_year,
                                           y=(population_data_2020.population, population_data_2020.state_shape),
                                           cmap='rainbow',
                                           figure=fig,
                                           ax=axis[3],
                                           reverse_yaxis=True,
                                           vmin=55036.0,
                                           vmax=39538223.0,
                                           title="US 2020 Population",
                                           xlabel="",
                                           ylabel="",
                                           xtick_values_format="")
  • >>> plot.show()

    Subplot Same Area