Geometry Plot | teradataml - Geometry Plot - Teradata Package for Python

Teradata® Package for Python User Guide

Deployment
VantageCloud
VantageCore
Edition
Enterprise
IntelliFlex
VMware
Product
Teradata Package for Python
Release Number
20.00
Published
March 2024
Language
English (United States)
Last Update
2024-04-09
dita:mapPath
nvi1706202040305.ditamap
dita:ditavalPath
plt1683835213376.ditaval
dita:id
rkb1531260709148
Product Category
Teradata Vantage

Use plot() function to generate a geometry plot on GeoDataFrame.

Geometry plot is a plot generated on GeoSpatial data or Geometry data, which is the geometry column in teradataml GeoDataFrame. Only the columns with ST_GEOMETRY type are allowed for generating geometry plot.
  • The maximum size for ST_GEOMETRY must be less than or equal to 64000.
  • The ST_GEOMETRY shape can be POINT, LINESTRING, and so on. POLYGON allows filling of different colors.
  • X-Axis is not significant geometry plot.
  • Y-Axis can be a tuple or DataFrame Column.
    • Geometry plot always requires geometry column and corresponding 'weight' column in a tuple format. 'weight' column represents the weight of a shape mentioned in geometry column.
    • If you do not specify geometry column and specifies Y-Axis as DataFrame Column, then the default geometry column is considered for plotting.

Example

The following example describes the density of population for all the states across US in year 1990 by generating the geometry plot on a non default Figure.

  • Shapes of US states are generated from Free Blank United States Map in SVG - Resources simplemaps.
  • Population data is accessed from Historical Population Change Data (1910-2020) (census.gov) Historical Population Changes.
  • >>> load_example_data("geodataframe", ["us_population", "us_states_shapes"])
  • >>> us_population = DataFrame("us_population")
    >>> us_population
               location_type  population_year  population
    state_name
    Georgia            State             1930   2908506.0
    Georgia            State             1950   3444578.0
    Georgia            State             1960   3943116.0
    Georgia            State             1970   4589575.0
    Georgia            State             1990   6478216.0
    Georgia            State             2000   8186453.0
    Georgia            State             1980   5463105.0
    Georgia            State             1940   3123723.0
    Georgia            State             1920   2895832.0
    Georgia            State             1910   2609121.0
  • >>> us_states_shapes = GeoDataFrame("us_states_shapes")
    >>> us_states_shapes
           state_name                     state_shape
    id
    NM     New Mexico  POLYGON ((472.45213 324.75551,
    VA       Virginia  POLYGON ((908.75086 270.98255,
    ND   North Dakota  POLYGON ((556.50879 73.847349,
    OK       Oklahoma  POLYGON ((609.50526 322.91131,
    WI      Wisconsin  POLYGON ((705.79187 134.80299,
    RI   Rhode Island  POLYGON ((946.50841 152.08022,
    HI         Hawaii  POLYGON ((416.34965 514.99923,
    KY       Kentucky  POLYGON ((693.17367 317.18459,
    WV  West Virginia  POLYGON ((836.73002 223.71281,
    NJ     New Jersey  POLYGON ((916.80709 207.30914,
  • Join shapes with population and filter only 1990 data.
    >>> population_data = us_states_shapes.join(us_population,
                                                on=us_population.state_name == us_states_shapes.state_name,
                                                lsuffix="us",
                                                rsuffix="t2")
    >>> population_data = population_data.select(["us_state_name", "state_shape", "population_year", "population"])
    >>> population_data_1990 = population_data[population_data.population_year == 1990]
    >>> population_data_1990
       us_state_name                     state_shape  population_year  population
    0     New Mexico  POLYGON ((472.45213 324.75551,             1990   1515069.0
    1         Hawaii  POLYGON ((416.34965 514.99923,             1990   1108229.0
    2       Kentucky  POLYGON ((693.17367 317.18459,             1990   3685296.0
    3     New Jersey  POLYGON ((916.80709 207.30914,             1990   7730188.0
    4   North Dakota  POLYGON ((556.50879 73.847349,             1990    638800.0
    5       Oklahoma  POLYGON ((609.50526 322.91131,             1990   3145585.0
    6  West Virginia  POLYGON ((836.73002 223.71281,             1990   1793477.0
    7      Wisconsin  POLYGON ((705.79187 134.80299,             1990   4891769.0
    8       Virginia  POLYGON ((908.75086 270.98255,             1990   6187358.0
    9   Rhode Island  POLYGON ((946.50841 152.08022,             1990   1003464.0
  • >>> from teradataml import Figure
    >>> figure = Figure(width=1550, height=860)
    >>> figure.heading = "Geometry Plot"
  • >>> plot_1990 = population_data_1990.plot(y=(population_data_1990.population, population_data_1990.state_shape),
                                                      cmap='rainbow',
                                                      figure=figure,
                                                      reverse_yaxis=True,
                                                      title="US 1990 Population",
                                                      xlabel="",
                                                      ylabel="")
    >>> plot_1990.show()

    Geometry Plot