deploy | Script Method | Teradata Package for Python - deploy - Teradata Package for Python

Teradata® Package for Python User Guide

Deployment
VantageCloud
VantageCore
Edition
Enterprise
IntelliFlex
VMware
Product
Teradata Package for Python
Release Number
20.00
Published
December 2024
ft:locale
en-US
ft:lastEdition
2025-01-23
dita:mapPath
nvi1706202040305.ditamap
dita:ditavalPath
plt1683835213376.ditaval
dita:id
rkb1531260709148
lifecycle
latest
Product Category
Teradata Vantage

Use the deploy method to deploy a model generated using execute_script() in database.

Required Arguments:

  • model_column: Specifies the column name in which model is present.

    Supported types of model in this column are CLOB and BLOB.

    The column mentioned in this argument should be present in <script_obj>.result.

Optional Arguments:

  • partition_columns: Specifies the columns on which data is partitioned.
    The columns mentioned in this argument should be present in <script_obj>.result.
  • model_file_prefix: Specifies the prefix to be used to the generated model file.

    If this argument is None, prefix is auto-generated.

    When the argument model_column contains multiple models:
    • If partition_columns is None, model file prefix is appended with underscore(_) and numbers starting from one (1) to get model file names.
    • If partition_columns is not None, model file prefix is appended with underscore(_) and unique values in partition_columns to generate model file names.

Examples Setup

  • Load example data.
    >>> load_example_data("openml", "multi_model_classification")
  • Create teradataml DataFrame from the data.
    >>> df = DataFrame("multi_model_classification")
  • Install Script file.
    >>> file_location = os.path.join(os.path.dirname(teradataml.__file__), "data", "scripts", "deploy_script.py")
    >>> install_file("deploy_script", file_location, replace=True)
  • Create variables needed for Script execution.
    >>> script_command = '/opt/teradata/languages/Python/bin/python3 ./ALICE/deploy_script.py'
    >>> partition_columns = ["partition_column_1", "partition_column_2"]
    >>> columns = ["col1", "col2", "col3", "col4", "label",
                                "partition_column_1", "partition_column_2"]
    >>> returns = OrderedDict([("partition_column_1", INTEGER()),
                                                   ("partition_column_2", INTEGER()),
                                                   ("model", CLOB())])
  • Run the Script.
    >>> obj = Script(data=df.select(columns),
                                 script_command=script_command,
                                 data_partition_column=partition_columns,
                                 returns=returns)
    >>> opt = obj.execute_script()
    >>> opt
    partition_column_1  partition_column_2               model 
                     0                  10   b'gAejc1.....drIr'
                     0                  11   b'gANjcw.....qWIu'
                     1                  10   b'abdwcd.....dWIz'
                     1                  11   b'gA4jc4.....agfu'

Example 1: Provide only partition_columns argument

In this example, only partition_columns is provided, model_file_prefix is auto-generated.

>>> obj.deploy(model_column="model",
               partition_columns=["partition_column_1", "partition_column_2"])
    ['model_file_1710436227163427__0_10',
     'model_file_1710436227163427__1_10',
     'model_file_1710436227163427__0_11',
     'model_file_1710436227163427__1_11']

Example 2: Provide only model_file_prefix argument

In this example, only model_file_prefix is provided, the file names are suffixed with 1, 2, 3, ... for multiple models.

>>> obj.deploy(model_column="model", model_file_prefix="my_prefix_new_")
['my_prefix_new__1',
 'my_prefix_new__2',
 'my_prefix_new__3',
 'my_prefix_new__4']

Example 3: Neither partition_columns nor model_file_prefix argument is provided

>>> obj.deploy(model_column="model")
['model_file_1710438346528596__1',
 'model_file_1710438346528596__2',
 'model_file_1710438346528596__3',
 'model_file_1710438346528596__4']

Example 4: Provide both partition_columns and model_file_prefix arguments

>>> obj.deploy(model_column="model", model_file_prefix="my_prefix_new_",
               partition_columns=["partition_column_1", "partition_column_2"])
['my_prefix_new__0_10',
 'my_prefix_new__0_11',
 'my_prefix_new__1_10',
 'my_prefix_new__1_11']