Single model case - LGBRegressor | teradataml open-source ML functions - Single model case - LGBMRegressor - Teradata Package for Python

Teradata® Package for Python User Guide

Deployment
VantageCloud
VantageCore
Edition
Enterprise
IntelliFlex
VMware
Product
Teradata Package for Python
Release Number
20.00
Published
December 2024
ft:locale
en-US
ft:lastEdition
2025-01-23
dita:mapPath
nvi1706202040305.ditamap
dita:ditavalPath
plt1683835213376.ditaval
dita:id
rkb1531260709148
Product Category
Teradata Vantage

The following example shows how to create the LGBRegressor object, set parameters, train the model, predict the values, and access attributes.

Create LGBMRegressor object

>>> obj = td_lightgbm.LGBMRegressor(num_leaves=5, n_estimators=15,
                                    learning_rate=0.01)
>>> obj
LGBMRegressor(learning_rate=0.01, n_estimators=15, num_leaves=5)

Set/update parameters

>>> obj.set_params(n_estimators=10)
LGBMRegressor(learning_rate=0.01, n_estimators=10, num_leaves=5)

Train the model

>>> obj.fit(df_x_reg, df_y_reg, callbacks=[td_lightgbm.log_evaluation()])
LGBMRegressor(learning_rate=0.01, n_estimators=10, num_leaves=5)

Predict the values

>>> obj.predict(X=df_x_reg)
             col1	             col2	             col3	            col4  lgbmregressor_predict_1
0.994394391315499	-0.27567053456055	-0.70972796584688	1.73887267745451	                -12.0
0.978567297446043	0.025385604406459	0.610391764305413	0.28601252697811	                  0.0
-1.18468659041155	-0.85172919725359	1.822723600123796	-0.5215796779933	                  7.0
  1.5363770542458	-0.11054065723247	1.020172711715805	-0.6920498477843	                  7.0
-2.73967716718956	-0.13010695419370	0.093953229385568	0.94304608732251	                 -3.0
0.378162519602174	1.532779214358461	1.469358769900291	0.15494742569691	                  7.0
-1.82691137830452	0.917221542115856	-0.05704286766218	0.87672677369045	                  0.0
-0.37522240076067	0.434807957731158	0.540094460524806	0.73242400975487	                  0.0
-0.52118931230111	1.364531848102473	-0.68944918454993	-0.6522935999350	                -12.0
-0.76157338825655	-2.36417381714118	0.020334181705243	-1.3479254226291	                 -7.0

Access attributes

>>> obj.feature_importances_
array([ 0, 10, 30,  0], dtype=int32)
>>> obj.objective_
'regression'