- Import the lightgbm module and create an LGBMClassifier model.
>>> from lightgbm import LGBMClassifier >>> local_obj = LGBMClassifier(num_leaves=5, objective="binary", n_estimators=10, learning_rate=0.01) >>> local_obj.fit(pdf_x, pdf_y) LGBMClassifier(learning_rate=0.01, n_estimators=10, num_leaves=5, objective='binary') >>> type(local_obj) lightgbm.sklearn.LGBMClassifier
- Deploy the trained sklearn LGBMClassifier model in Vantage.
>>> skl_deploy = td_lightgbm.deploy(model_name="skl_model_trained_outside_vantage", model=local_obj)
Model is saved.
>>> type(skl_deploy) teradataml.opensource._lightgbm._LighgbmSklearnWrapper
- Predict on data residing in Vantage using the loaded model.
>>> opt_load_outside.predict(data=df_x_classif, label=df_y_classif, pred_contrib=True)
col1 col2 col3 col4 lgbmclassifier_predict_1 1.08233576395768 0.846357336044 -0.012062715650015 0.812633063515 1 -0.7745167650864 1.038449425697 -0.258906316647375 0.092392283225 1 -0.9709790567988 0.290236916664 -0.159962241726072 -0.29883219671 1 -1.1673562332519 0.104859696888 -0.152596373567532 -0.45931604928 1 -1.4168228235533 -1.10436212447 0.0152120983410702 -1.06231349375 0 1.02461098542497 -1.42517183237 0.3508727700607491 -0.14329613097 0 0.75954632300467 0.045371444593 0.0808020806248121 0.345420111262 1 0.64698519314421 -0.58122848711 0.1696977265096732 0.040145692994 0 -1.4719082500819 -0.02919489258 -0.166141412269092 -0.64530912851 1 -1.1750967374649 -0.95074511349 0.0182795711560301 -0.89533500387 1