- Train the data without the callbacks argument.
>>> opt_s = td_lightgbm.train(params={}, train_set=obj_s, num_boost_round=30, valid_sets=[obj_s])>>> type(opt_s) teradataml.opensource._lightgbm._LightgbmBoosterWrapper
- Deploy the model.
>>> opt_s.deploy(model_name="lightgbm_deploy_train_single_model")
Model is saved. <lightgbm.basic.Booster object at 0x000...00>
>>> opt_s.record_evaluation_result # Empty as no record evaluation callback used.
- Load the deployed model.
>>> opt_load = td_lightgbm.load(model_name="lightgbm_deploy_train_single_model") >>> opt_load <lightgbm.basic.Booster object at 0x000...E0>
- Predict using the loaded model.
>>> opt_load.predict(data=df_x_classif, label=df_y_classif)
col1 col2 col3 col4 label booster_predict_1 1.0823357639576 0.84635733604494 -0.012062715650015 0.812633063515458 1 0.9346760906166353 -0.7745167656447 1.03844942569731 -0.258906316647375 0.092392283225207 1 0.9704807283586632 -0.9709790567905 0.29023691666418 -0.159962241726072 -0.298832196718898 1 0.9747562930550571 -1.1673562332519 0.10485969688830 -0.152596373567538 -0.459316049285644 1 0.9527103200682584 -1.4168228235536 -1.10436212447853 0.015212098341070 -1.062313493751677 0 0.1671869702680136 1.0246109854249 -1.42517183237691 0.350872770060749 -0.143296130974637 0 0.0307264091286578 0.7595463230046 0.04537144459357 0.080802080624812 0.345420111262436 0 0.0507321960512050 0.6469851931442 -0.58122848711195 0.169697726509673 0.040145692994821 0 0.0341349264570978 -1.4719082500811 -0.02919489258849 -0.166141412269092 -0.645309128519277 1 0.8729191084916251 -1.1750967374648 -0.95074511349926 0.018279571156030 -0.895335003873629 1 0.5546785905584524
- Create a single model with record_evaluation callback
>>> rec = {} - Train with valid_sets and callbacks argument.
>>> opt1 = td_lightgbm.train(params={}, train_set = obj_s, num_boost_round=30, callbacks=[td_lightgbm.record_evaluation(rec), td_lightgbm.early_stopping(3)], valid_sets=[obj_s])>>> opt1.record_evaluation_result {'valid_0': OrderedDict([('l2', [0.21581071275252509, 0.18813848372931546, ... ... 0.04169529314351532])])} - Deploy the model.
>>> opt1.deploy(model_name="lightgbm_deploy_train_single_model_with_callback")
Model is saved. <lightgbm.basic.Booster object at 0x00..8B0>
- Load the deployed model.
>>> opt1_load = td_lightgbm.load(model_name="lightgbm_deploy_train_single_model_with_callback")
>>> opt1_load.record_evaluation_result # Deploy will not save wrapper attributes. It just saves underlying model object.
>>> opt1_load.predict(df_x_classif) col1 col2 col3 col4 booster_predict_1 -0.697767009551012 2.3918078347398 -0.47022244995057 0.680153033261556 0.9798849376620596 -0.733263307298235 1.9773705102473 -0.40690381676384 0.495003202510811 0.9699154086912621 0.9577016978304661 -1.410567531062 0.340727932762679 -0.16610004792191 0.0295051822937243 -1.083977873075923 1.8792459682678 -0.43165520428563 0.303874588671142 0.9832371207930688 -0.655697611869257 -0.708487381682 0.039161396505109 -0.57254406467090 0.3199544221250283 -0.652532094184103 1.3294307289508 -0.29209389759953 0.264152749130696 0.9732308238382781 -1.537164191873611 -0.750650223194 -0.05631805152509 -0.96910962312450 0.6395031001506465 0.9082253663109264 -1.169232609988 0.295712076085351 -0.08846679694776 0.0159457535568849 -0.741761812488457 -1.319910570598 0.128663746621739 -0.86019632384497 0.1768105684264068 1.4588391821477944 0.6278710266435 0.067203725213036 0.885080711754702 0.6711517783816373