tdapiclient | Amazon SageMaker Python SDK | Teradata Vantage - teradataml Extension - Teradata Vantage

Teradata Vantageā„¢ - API Integration Guide for Cloud Machine Learning

Deployment
VantageCloud
VantageCore
Edition
Enterprise
IntelliFlex
VMware
Product
Teradata Vantage
Release Number
1.4
Published
September 2023
ft:locale
en-US
ft:lastEdition
2023-09-28
dita:mapPath
mgu1643999543506.ditamap
dita:ditavalPath
ayr1485454803741.ditaval
dita:id
mgu1643999543506

The Teradata Package for Python (teradataml), which is Teradata's Python package for client-side scripts, is extended with support for Amazon SageMaker. This support is included in the tdapiclient library.

Many of the Amazon SageMaker APIs are callable through tdapiclient. Specifically, tdapiclient integration with Amazon SageMaker works with their estimator class and derived classes.

The Amazon SageMaker Python SDK provides the following interfaces SageMaker APIs.

Amazon SageMaker Interface Supported through tdapiclient?
Estimators Supported, through the same API as the Estimators class. You provide a teradataml DataFrame for training through the fit Method.

Supported estimators:

"sagemaker.mxnet.estimator",

"sagemaker.sklearn.estimator",

"sagemaker.chainer",

"sagemaker.huggingface",

"sagemaker.pytorch",

"sagemaker.rl.estimator",

"sagemaker.tensorflow",

"sagemaker.estimator",

"sagemaker.xgboost.estimator"

Predictors Supported
Model Supported for Teradata BYOM use case. You can also specify model path.

The teradataml SageMaker extension library (tdapiclient) includes the following functions and interfaces.