- Load required packages and create DataFrame.
>>> from teradatamlspk.ml.feature import StandardScaler
>>> from teradatamlspk.sql.functions import monotonically_increasing_id
>>> df = df.select(monotonically_increasing_id().alias('id'), "feature1", "feature2", "feature3") >>> df.show() +--+--------+--------+--------+ |id|feature1|feature2|feature3| +--+--------+--------+--------+ | 3| 3.0| 10.1| 3.0| | 2| 2.0| 1.1| 1.0| | 1| 1.0| 0.1| -1.0| +--+--------+--------+--------+
- Run StandardScaler function.
>>> scaler = StandardScaler(inputCol=["feature2", "feature3"], withMean=True)
>>> scaled_df = scaler.fit(df).transform(df)
+--+--------+------------------+--------+ |id|feature1| feature2|feature3| +--+--------+------------------+--------+ | 3| 3.0| 6.333333333333332| 2.0| | 2| 2.0|-2.666666666666667| 0.0| | 1| 1.0|-3.666666666666667| -2.0| +--+--------+------------------+--------+