When reading Parquet file in teradatamlspk, the file must be in cloud storage or local platform.
PySpark
spark.read.parquet(path = "parquet_path").show()
teradatamlspk
spark.read.options(authorization = {"Access_ID": id, "Access_Key": key}).parquet(path = "/connector/bucket.endpoint/[key_prefix]").show()
using format
spark.read.options(authorization = {"Access_ID": id, "Access_Key": key}).format("parquet").load(path = "/connector/bucket.endpoint/[key_prefix]").show()