Arguments
This function internally uses scikit-learn function GradientBoostingRegressor through teradataml Open source ML functions.
PySpark Argument Name | Open Source Function Argument Name | Notes |
---|---|---|
predictionCol | Not yet available | |
maxDepth | max_depth | |
maxBins | Not yet available | |
minInstancesPerNode | min_samples_split | PySpark takes int value (>= 1) default value is 1, teradatamlspk supports int value (>1) or float in (0.0, 1.0]. Default value is 1.0. |
minInfoGain | Not yet available | |
maxMemoryInMB | Not yet available | |
cacheNodeIds | Not yet available | |
checkpointInterval | Not yet available | |
lossType | loss | Supported values ['ls', 'lad', 'huber', 'quantile']. |
maxIter | Not yet available | |
stepSize | learning_rate | |
seed | raendom_state | |
subsamplingRate | subsample | |
impurity | criterion | Supported values ['friedman_mse','mse','mae']. |
featureSubsetStrategy | Not yet available | |
validationTol | Not yet available | |
leafCol | Not yet available | |
minWeightFractionPerNode | min_weight_fraction_leaf | |
weightCol | Not yet available |
Attributes/Methods
Attribute/Method Name | Supported | Notes |
---|---|---|
clear | ||
copy | ||
explainParam | ||
explainParams | ||
extractParamMap | ||
fit | ||
fitMultiple | ||
getCacheNodeIds | ||
getCheckpointInterval | ||
getFeatureSubsetStrategy | ||
getFeaturesCol | ||
getImpurity | ||
getLabelCol | ||
getLeafCol | ||
getLossType | ||
getMaxBins | ||
getMaxDepth | ||
maxIter | ||
getMaxMemoryInMB | ||
getMinInfoGain | ||
getMinInstancesPerNode | ||
getMinWeightFractionPerNode | ||
getOrDefault | ||
getParam | ||
getPredictionCol | ||
getSeed | ||
getStepSize | ||
getSubsamplingRate | ||
getValidationTol | ||
getWeightCol | ||
hasDefault | ||
hasParam | ||
isDefined | ||
isSet | ||
load | ||
read | ||
save | ||
set | ||
setCacheNodeIds | ||
setCheckpointInterval | ||
setFeatureSubsetStrategy | ||
setFeaturesCol | ||
setImpurity | ||
setLabelCol | ||
setLeafCol | ||
setLossType | ||
setMaxBins | ||
setMaxDepth | ||
setMaxMemoryInMB | ||
setMinInfoGain | ||
setMinInstancesPerNode | ||
setMinWeightFractionPerNode | ||
setParams | ||
setPredictionCol | ||
setSeed | ||
setStepSize | ||
setSubSamplingRate | ||
setWeightCol | ||
write | ||
cacheNodeIds | ||
checkpointInterval | ||
featureSubsetStrategy | ||
featuresCol | ||
impurity | ||
labelCol | ||
leafCol | ||
lossType | ||
maxBins | ||
maxDepth | ||
maxIter | ||
maxMemoryInMB | ||
minInfoGain | ||
minInstancesPerNode | ||
minWeightFractionPerNode | ||
params | ||
predictionCol | ||
seed | ||
stepSize | ||
subsamplingRate | ||
supportedFeatureSubsetStrategies | ||
supportedImpurities | ||
supportedLossTypes | ||
validationIndicatorCol | ||
validationTol | ||
weightCol |