Teradata Python Package Function Reference - 16.20 - CoxPH - Teradata Python Package

Teradata® Python Package Function Reference

prodname
Teradata Python Package
vrm_release
16.20
created_date
February 2020
category
Programming Reference
featnum
B700-4008-098K

 
teradataml.analytics.mle.CoxPH = class CoxPH(builtins.object)
     Methods defined here:
__init__(self, data=None, feature_columns=None, time_interval_column=None, event_column=None, threshold=1e-09, max_iter_num=10, categorical_columns=None, accumulate=None, data_sequence_column=None)
DESCRIPTION:
    The CoxPH function is named for the Cox proportional hazards model, a 
    statistical survival model. The function estimates coefficients by 
    learning a set of explanatory variables. The output of the CoxPH 
    function is input to the function CoxHazardRatio and CoxSurvFit.
 
 
PARAMETERS:
    data:
        Required Argument.
        Specifies the name of the teradataml DataFrame that contains the 
        input parameters.
    
    feature_columns:
        Required Argument.
        Specifies the names of the input teradataml DataFrame columns that 
        contain the features of the input parameters.
        Types: str OR list of Strings (str)
    
    time_interval_column:
        Required Argument.
        Specifies the name of the column in input_table that contains the 
        time intervals of the input parameters; that is, end_time - 
        start_time, in any unit of time (for example, years, months, or days).
        Types: str
    
    event_column:
        Required Argument.
        Specifies the name of the column in input_table that contains 1 if 
        the event occurred by end_time and 0 if it did not. (0 represents 
        survival or right-censorship.) The function ignores values other than 
        1 and 0.
        Types: str
    
    threshold:
        Optional Argument.
        Specifies the convergence threshold. 
        Default Value: 1.0E-9
        Types: float
    
    max_iter_num:
        Optional Argument.
        Specifies the maximum number of iterations that the function runs 
        before finishing, if the convergence threshold has not been met. 
        Default Value: 10
        Types: int
    
    categorical_columns:
        Optional Argument.
        Specifies the names of the input teradataml DataFrame columns that 
        contain categorical predictors. Each categorical_column must also be 
        a feature_column. By default, the function detects the categorical 
        columns by their SQL data types.
        Types: str OR list of Strings (str)
    
    accumulate:
        Optional Argument.
        Specifies the names of the columns in input_table that the function 
        copies to linear_predictor_table.
        Types: str OR list of Strings (str)
    
    data_sequence_column:
        Optional Argument.
        Specifies the list of column(s) that uniquely identifies each row of 
        the input argument "data". The argument is used to ensure 
        deterministic results for functions which produce results that vary 
        from run to run.
        Types: str OR list of Strings (str)
 
RETURNS:
    Instance of CoxPH.
    Output teradataml DataFrames can be accessed using attribute
    references, such as CoxPHObj.<attribute_name>.
    Output teradataml DataFrame attribute names are:
        1. coefficient_table
        2. linear_predictor_table
        3. output
 
 
RAISES:
    TeradataMlException
 
 
EXAMPLES:
    # Load the data to run the example
    load_example_data("coxph", "lungcancer")
 
    # Create teradataml DataFrame objects.
    lungcancer = DataFrame.from_table("lungcancer")
 
    # Example 1 -
    coxph_out = CoxPH(data = lungcancer,
                     feature_columns = ["trt","celltype","karno","diagtime","age","prior"],
                     time_interval_column = "time_int",
                     event_column = "status",
                     categorical_columns = ["trt","celltype","prior"]
                     )
 
    # Print the results
    print(coxph_out.coefficient_table)
    print(coxph_out.linear_predictor_table)
    print(coxph_out.output)
__repr__(self)
Returns the string representation for a CoxPH class instance.