Teradata Package for Python Function Reference on VantageCloud Lake - spherical_distance - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.
Teradata® Package for Python Function Reference on VantageCloud Lake
- Deployment
- VantageCloud
- Edition
- Lake
- Product
- Teradata Package for Python
- Release Number
- 20.00.00.04
- Published
- March 2025
- ft:locale
- en-US
- ft:lastEdition
- 2025-04-11
- dita:id
- TeradataPython_FxRef_Lake_2000
- Product Category
- Teradata Vantage
- teradataml.geospatial.geodataframecolumn.GeoDataFrameColumn.spherical_distance = spherical_distance(self, geom_column)
- DESCRIPTION:
Returns the spherical distance between two spherical coordinates on the
planet using the Haversine Formula. Both coordinates must be specified
as ST_Point values.
PARAMETERS:
geom_column:
Required Argument.
Specifies a Geometry for the other spherical coordinate.
Types: str, ColumnExpression, GeometryType
SUPPORTED GEOMETRY TYPES:
ST_Point
RAISES:
TypeError, ValueError, TeradataMlException
RETURNS:
GeoDataFrameColumn
EXAMPLES:
from teradataml import GeoDataFrame, load_example_data
from teradataml import Point, LineString, Polygon, GeometryCollection
# Load example data.
load_example_data("geodataframe", "sample_shapes")
# Create a GeoDataFrame.
geodf = GeoDataFrame("sample_shapes")
print(geodf)
# Let's select only few columns from GeoDataFrame and join the GeoDataFrameColumn to self.
points_df = geodf.select(["skey", "points"])[geodf.skey.isin([1001, 1002, 1003])]
points_df = points_df.join(points_df, how="cross", lsuffix="l", rsuffix="r")
# Example 1: Get the spherical distance between two spherical coordinates on the planet using
# the Haversine Formula, where coordinates are in columns 'l_point' and 'r_point'.
points_df.assign(res = points_df.l_points.spherical_distance(points_df.r_points))
# Example 2: Get the spherical distance between the spherical coordinates on the planet using
# the Haversine Formula, where set of points is in column "point" and another geometry
# defined by the Point object.
# Create an object of Point GeometryType.
p1 = Point(1,3)
# Pass the Point() GeometryType object as input to "geom_column" argument.
points_df.assign(res = points_df.l_points.spherical_distance(geom_column=p1))