| |
- exp(column_expression)
- DESCRIPTION:
Function raises e (the base of natural logarithms) to the power of the argument, where e = 2.71828182845905.
PARAMETERS:
column_expression:
Required Argument.
Specifies a ColumnExpression containing numeric values.
Format for the argument: '<dataframe>.<dataframe_column>.expression'.
Notes:
1. If the type of the column/argument is not FLOAT, column values are converted to FLOAT
based on implicit type conversion rules. If an argument cannot be converted, an
error is reported. For more information on implicit type conversion,
see Teradata Vantage™ Data Types and Literals, B035-1143.
2. Unsupported column types:
a. BYTE or VARBYTE
b. LOBs (BLOB or CLOB)
c. CHARACTER or VARCHAR if the server character set is GRAPHIC
NOTE:
Function accepts positional arguments only.
EXAMPLES:
# Load the data to run the example.
>>> load_example_data("dataframe", "admissions_train")
>>>
# Create a DataFrame on 'admissions_train' table.
>>> admissions_train = DataFrame("admissions_train")
>>> admissions_train
masters gpa stats programming admitted
id
22 yes 3.46 Novice Beginner 0
36 no 3.00 Advanced Novice 0
15 yes 4.00 Advanced Advanced 1
38 yes 2.65 Advanced Beginner 1
5 no 3.44 Novice Novice 0
17 no 3.83 Advanced Advanced 1
34 yes 3.85 Advanced Beginner 0
13 no 4.00 Advanced Novice 1
26 yes 3.57 Advanced Advanced 1
19 yes 1.98 Advanced Advanced 0
>>>
# Import func from sqlalchemy to execute radians() function.
>>> from sqlalchemy import func
# Create a sqlalchemy Function object.
>>> exp_func_ = func.exp(admissions_train.admitted.expression)
>>>
# Pass the Function object as input to DataFrame.assign().
>>> df = admissions_train.assign(exp_admitted_func_ = exp_func_)
>>> print(df)
masters gpa stats programming admitted exp_admitted_func_
id
15 yes 4.00 Advanced Advanced 1 2.718282
7 yes 2.33 Novice Novice 1 2.718282
22 yes 3.46 Novice Beginner 0 1.000000
17 no 3.83 Advanced Advanced 1 2.718282
13 no 4.00 Advanced Novice 1 2.718282
38 yes 2.65 Advanced Beginner 1 2.718282
26 yes 3.57 Advanced Advanced 1 2.718282
5 no 3.44 Novice Novice 0 1.000000
34 yes 3.85 Advanced Beginner 0 1.000000
40 yes 3.95 Novice Beginner 0 1.000000
>>>
|