Teradata Package for Python Function Reference on VantageCloud Lake - alias - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.

Teradata® Package for Python Function Reference on VantageCloud Lake

Deployment
VantageCloud
Edition
Lake
Product
Teradata Package for Python
Release Number
20.00.00.03
Published
December 2024
ft:locale
en-US
ft:lastEdition
2024-12-19
dita:id
TeradataPython_FxRef_Lake_2000
Product Category
Teradata Vantage
teradataml.dataframe.dataframe.DataFrame.alias = alias(self, alias_name)
DESCRIPTION:
    Method to create an aliased teradataml DataFrame.
    Note:
        * This method is recommended to be used before performing
          self join using DataFrame's join() API.
 
PARAMETERS:
    alias_name:
        Required Argument.
        Specifies the alias name to be assigned to a teradataml DataFrame.
        Types: str
 
RETURNS:
    teradataml DataFrame
 
EXAMPLES:
    >>> load_example_data("dataframe", "admissions_train")
    >>> df = DataFrame("admissions_train")
    >>> df
       masters   gpa     stats programming  admitted
    id
    13      no  4.00  Advanced      Novice         1
    26     yes  3.57  Advanced    Advanced         1
    5       no  3.44    Novice      Novice         0
    19     yes  1.98  Advanced    Advanced         0
    15     yes  4.00  Advanced    Advanced         1
    40     yes  3.95    Novice    Beginner         0
    7      yes  2.33    Novice      Novice         1
    22     yes  3.46    Novice    Beginner         0
    36      no  3.00  Advanced      Novice         0
    38     yes  2.65  Advanced    Beginner         1
 
    # Example 1: Create an alias of teradataml DataFrame.
 
    >>> df2 = df.alias("adm_trn")
 
    # Print aliased DataFrame.
    >>> df2
       masters   gpa     stats programming  admitted
    id
    13      no  4.00  Advanced      Novice         1
    26     yes  3.57  Advanced    Advanced         1
    5       no  3.44    Novice      Novice         0
    19     yes  1.98  Advanced    Advanced         0
    15     yes  4.00  Advanced    Advanced         1
    40     yes  3.95    Novice    Beginner         0
    7      yes  2.33    Novice      Novice         1
    22     yes  3.46    Novice    Beginner         0
    36      no  3.00  Advanced      Novice         0
    38     yes  2.65  Advanced    Beginner         1