Teradata Package for Python Function Reference on VantageCloud Lake - sum - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.
Teradata® Package for Python Function Reference on VantageCloud Lake
- Deployment
- VantageCloud
- Edition
- Lake
- Product
- Teradata Package for Python
- Release Number
- 20.00.00.03
- Published
- December 2024
- ft:locale
- en-US
- ft:lastEdition
- 2024-12-19
- dita:id
- TeradataPython_FxRef_Lake_2000
- Product Category
- Teradata Vantage
- teradataml.dataframe.sql.DataFrameColumn.sum = sum(self, distinct=False, **kwargs)
- DESCRIPTION:
Function to get the sum of values in a column.
PARAMETERS:
distinct:
Optional Argument.
Specifies a flag that decides whether to consider duplicate values in
a column or not.
Default Values: False
Types: bool
kwargs:
Specifies optional keyword arguments.
RETURNS:
ColumnExpression, also known as, teradataml DataFrameColumn.
NOTES:
* One must use DataFrame.assign() when using the aggregate functions on
ColumnExpression, also known as, teradataml DataFrameColumn.
* One should always use "drop_columns=True" in DataFrame.assign(), while
running the aggregate operation on teradataml DataFrame.
* "drop_columns" argument in DataFrame.assign() is ignored, when aggregate
function is operated on DataFrame.groupby().
RAISES:
RuntimeError - If column does not support the aggregate operation.
EXAMPLES:
# Load the data to run the example.
>>> load_example_data("dataframe", "admissions_train")
>>>
# Create a DataFrame on 'admissions_train' table.
>>> admissions_train = DataFrame("admissions_train")
>>> admissions_train
masters gpa stats programming admitted
id
22 yes 3.46 Novice Beginner 0
36 no 3.00 Advanced Novice 0
15 yes 4.00 Advanced Advanced 1
38 yes 2.65 Advanced Beginner 1
5 no 3.44 Novice Novice 0
17 no 3.83 Advanced Advanced 1
34 yes 3.85 Advanced Beginner 0
13 no 4.00 Advanced Novice 1
26 yes 3.57 Advanced Advanced 1
19 yes 1.98 Advanced Advanced 0
>>>
# Example 1: Calculate the sum of the values in 'gpa' column.
# Execute sum() function using teradataml DataFrameColumn to generate the ColumnExpression.
>>> sum_column = admissions_train.gpa.sum()
# Pass the generated ColumnExpression to DataFrame.assign(), to run and produce the result.
>>> df = admissions_train.assign(True, sum_=sum_column)
>>> df
sum_
0 141.67
>>>
# Example 2: Calculate the sum of the distinct values in'gpa' column
# for each level of programming.
# Note:
# When assign() is run after DataFrame.groupby(), the function ignores
# the "drop_columns" argument.
# Execute sum() function using teradataml DataFrameColumn to generate the ColumnExpression.
>>> sum_column = admissions_train.gpa.sum(distinct=True)
# Pass the generated ColumnExpression to DataFrame.assign(), to run and produce the result.
>>> df=admissions_train.groupby("programming").assign(sum_=sum_column)
>>> df
programming sum_
0 Beginner 40.17
1 Advanced 53.89
2 Novice 36.24
>>>