Teradata Package for Python Function Reference on VantageCloud Lake - trim - Teradata Package for Python - Look here for syntax, methods and examples for the functions included in the Teradata Package for Python.
Teradata® Package for Python Function Reference on VantageCloud Lake
- Deployment
- VantageCloud
- Edition
- Lake
- Product
- Teradata Package for Python
- Release Number
- 20.00.00.03
- Published
- December 2024
- ft:locale
- en-US
- ft:lastEdition
- 2024-12-19
- dita:id
- TeradataPython_FxRef_Lake_2000
- Product Category
- Teradata Vantage
- teradataml.dataframe.sql.DataFrameColumn.trim = trim(self, expression=' ')
- DESCRIPTION:
Function trims the string values in the column.
PARAMETERS:
expression:
Optional Argument.
Specifies a ColumnExpression of a string column or a string literal to
be trimmed. If "expression" is specified, it must be the same data type
as string values in column.
Default Value: ' '
Type: str or ColumnExpression
RAISES:
TypeError, ValueError, TeradataMlException
RETURNS:
ColumnExpression
EXAMPLES:
# Load the data to run the example.
>>> load_example_data("dataframe", "admissions_train")
# Create a DataFrame on 'admissions_train' table.
>>> df = DataFrame("admissions_train")
>>> df
masters gpa stats programming admitted
id
38 yes 2.65 Advanced Beginner 1
7 yes 2.33 Novice Novice 1
26 yes 3.57 Advanced Advanced 1
5 no 3.44 Novice Novice 0
3 no 3.70 Novice Beginner 1
22 yes 3.46 Novice Beginner 0
24 no 1.87 Advanced Novice 1
36 no 3.00 Advanced Novice 0
19 yes 1.98 Advanced Advanced 0
40 yes 3.95 Novice Beginner 0
# Example 1: Trim "Begi" from the strings in column "programing".
>>> res = df.assign(trim_col = df.programming.trim("Begi"))
>>> res
masters gpa stats programming admitted trim_col
id
38 yes 2.65 Advanced Beginner 1 nner
7 yes 2.33 Novice Novice 1 Novic
26 yes 3.57 Advanced Advanced 1 Advanced
5 no 3.44 Novice Novice 0 Novic
3 no 3.70 Novice Beginner 1 nner
22 yes 3.46 Novice Beginner 0 nner
24 no 1.87 Advanced Novice 1 Novic
36 no 3.00 Advanced Novice 0 Novic
19 yes 1.98 Advanced Advanced 0 Advanced
40 yes 3.95 Novice Beginner 0 nner
# Example 2: Filter the rows where values in the column "programming" result
# in "nner" after it is trimmed with 'Begi'.
>>> df[df.programming.trim("Begi") == "nner"]
masters gpa stats programming admitted
id
3 no 3.70 Novice Beginner 1
1 yes 3.95 Beginner Beginner 0
39 yes 3.75 Advanced Beginner 0
34 yes 3.85 Advanced Beginner 0
35 no 3.68 Novice Beginner 1
31 yes 3.50 Advanced Beginner 1
29 yes 4.00 Novice Beginner 0
32 yes 3.46 Advanced Beginner 0
22 yes 3.46 Novice Beginner 0
38 yes 2.65 Advanced Beginner 1
# Example 3: Trim string in "programing" column using "masters" column as argument.
>>> res = df.assign(trim_col = df.programming.trim(df.masters))
>>> res
masters gpa stats programming admitted trim_col
id
38 yes 2.65 Advanced Beginner 1 Beginner
7 yes 2.33 Novice Novice 1 Novic
26 yes 3.57 Advanced Advanced 1 Advanced
17 no 3.83 Advanced Advanced 1 Advanced
34 yes 3.85 Advanced Beginner 0 Beginner
13 no 4.00 Advanced Novice 1 Novice
32 yes 3.46 Advanced Beginner 0 Beginner
11 no 3.13 Advanced Advanced 1 Advanced
15 yes 4.00 Advanced Advanced 1 Advanced
36 no 3.00 Advanced Novice 0 Novice